Navigation Links
Trio of plant genes prevent 'too many mouths'

A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plant from wallpapering itself with too many densely clustered stomata.

"It's surprising that size and stomata patterning ?both key to plants being able to survive on dry land ?are using the same signaling components," says Jessica McAbee, a University of Washington research associate in biology. She's one co-author of a report in the July 8 issue of Science about work with Arabidopsis, a weed-like member of the crucifer family for which scientists already have a genomic map.

Stomata are microscopic pores on the surface of plants that open to allow plants to take in carbon dioxide from the air for photosynthesis. They close when there is the danger that the plant tissue may lose too much moisture.

"Specialized cells open and close the stomata, much like opening and closing a mouth," says Keiko Torii, UW assistant professor of biology. Stomata too close together can't operate effectively.

Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land, Torii says. Even atmospheric scientists are interested in such basic plant biology, given the enormous amount of the greenhouse gas carbon dioxide taken up by the Earth's plants.

Scientists already believed that part of the signaling pathway for stomata production included the receptor-like protein Too Many Mouths, so called because when absent the plant makes too many stomata, or mouths.

Scientists were searching for a single stomata gene that had to be working in concert with Too Many Mouths to get an efficient distribution of stomata, Torii says. No one was considering that more than one gene could be involved, much less three, or that the genes could be serving other purposes, she says.

The UW team of four female scientists se rendipitously discovered what appears to be part of the pathway that tempers the production of stomata while studying a trio of genes that code for signaling receptors required for normal plant height.

The scientists were working on a basic understanding of plant growth as part of U.S. Department of Energy and Japanese Science and Technology Agency-funded work about growing plant material, or biomass, suitable for producing fuel. By mutating all three genes ?essentially putting them all out of action ?the researchers got dwarf plants an inch high instead of the normal 1½ feet. Surprisingly the plants also were so densely covered with stomata that most stomata were touching each other.

These genes appear to have roles at two points in the production of stomata. First, they inhibit undifferentiated cells ?those unspecialized cells that have yet to turn into specific cell types ?from making too many stomata and then they repress the development of two guard cells that open and close the stomata pore.

Co-authors of the Science paper besides Torii and McAbee are lead author Elena Shpak, former research associate at the UW and starting this fall as an assistant professor at California State University, Fullerton, and Lynn Pillitteri, a UW research associate in biology.


'"/>

Source:University of Washington


Related biology news :

1. Key molecule in plant photo-protection identified
2. Transplantation Of Monkey Embryonic Stem Cells Reverses Parkinson Disease In Primates
3. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
4. Circles Of DNA Might Help Predict Success Of Stem Cell Transplantation
5. Antibodies from plants protect against anthrax
6. New RNA polymerase discovered in plants
7. Implanted Devices Detect High-Risk Heart Failure Patients
8. Ophthalmologists implant five patients with artificial silicon retina microchip
9. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
10. Polymers with copper show promise for implanted sensors
11. Transgenic plants remove more selenium from polluted soil than wild plants, new tests show
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
(Date:5/12/2016)... DALLAS , May 12, 2016 ... has just published the overview results from the Q1 ... of the recent wave was consumers, receptivity to a ... wearables data with a health insurance company. ... choose to share," says Michael LaColla , CEO ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in clinical ... Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits ... tips, tools, and strategies for clinical researchers. , “The landscape of how patients ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. , ... tests introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial ...
Breaking Biology Technology: