Navigation Links
Trio of plant genes prevent 'too many mouths'

A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plant from wallpapering itself with too many densely clustered stomata.

"It's surprising that size and stomata patterning ?both key to plants being able to survive on dry land ?are using the same signaling components," says Jessica McAbee, a University of Washington research associate in biology. She's one co-author of a report in the July 8 issue of Science about work with Arabidopsis, a weed-like member of the crucifer family for which scientists already have a genomic map.

Stomata are microscopic pores on the surface of plants that open to allow plants to take in carbon dioxide from the air for photosynthesis. They close when there is the danger that the plant tissue may lose too much moisture.

"Specialized cells open and close the stomata, much like opening and closing a mouth," says Keiko Torii, UW assistant professor of biology. Stomata too close together can't operate effectively.

Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land, Torii says. Even atmospheric scientists are interested in such basic plant biology, given the enormous amount of the greenhouse gas carbon dioxide taken up by the Earth's plants.

Scientists already believed that part of the signaling pathway for stomata production included the receptor-like protein Too Many Mouths, so called because when absent the plant makes too many stomata, or mouths.

Scientists were searching for a single stomata gene that had to be working in concert with Too Many Mouths to get an efficient distribution of stomata, Torii says. No one was considering that more than one gene could be involved, much less three, or that the genes could be serving other purposes, she says.

The UW team of four female scientists se rendipitously discovered what appears to be part of the pathway that tempers the production of stomata while studying a trio of genes that code for signaling receptors required for normal plant height.

The scientists were working on a basic understanding of plant growth as part of U.S. Department of Energy and Japanese Science and Technology Agency-funded work about growing plant material, or biomass, suitable for producing fuel. By mutating all three genes ?essentially putting them all out of action ?the researchers got dwarf plants an inch high instead of the normal 1½ feet. Surprisingly the plants also were so densely covered with stomata that most stomata were touching each other.

These genes appear to have roles at two points in the production of stomata. First, they inhibit undifferentiated cells ?those unspecialized cells that have yet to turn into specific cell types ?from making too many stomata and then they repress the development of two guard cells that open and close the stomata pore.

Co-authors of the Science paper besides Torii and McAbee are lead author Elena Shpak, former research associate at the UW and starting this fall as an assistant professor at California State University, Fullerton, and Lynn Pillitteri, a UW research associate in biology.


'"/>

Source:University of Washington


Related biology news :

1. Key molecule in plant photo-protection identified
2. Transplantation Of Monkey Embryonic Stem Cells Reverses Parkinson Disease In Primates
3. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
4. Circles Of DNA Might Help Predict Success Of Stem Cell Transplantation
5. Antibodies from plants protect against anthrax
6. New RNA polymerase discovered in plants
7. Implanted Devices Detect High-Risk Heart Failure Patients
8. Ophthalmologists implant five patients with artificial silicon retina microchip
9. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
10. Polymers with copper show promise for implanted sensors
11. Transgenic plants remove more selenium from polluted soil than wild plants, new tests show
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
(Date:3/23/2017)... 23, 2017 The report "Gesture Recognition and Touchless Sensing ... Geography - Global Forecast to 2022", published by MarketsandMarkets, the market is expected ... 29.63% between 2017 and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... NY (PRWEB) , ... October 12, 2017 , ... ... of Sciences today announced the three Winners and six Finalists of the 2017 ... given annually by the Blavatnik Family Foundation and administered by the New York ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... ... 2017 , ... Proscia Inc ., a data solutions ... “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, Managing ... how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today ... designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) ... able to cross the cell membrane and bind intracellular STAT3 and inhibit its ...
Breaking Biology Technology: