Navigation Links
Tool developed to silence genes in specific tissues using RNAi

Researchers at The University of Texas M. D. Anderson Cancer Center say they have jumped a significant hurdle in the use of RNA interference (RNAi), believed by many to be the ultimate tool to both decode the function of individual genes in the human genome and to treat disease.

Reporting in the journal Genes and Development, investigators have developed a simple way to use the RNAi approach to silence a selected gene in a specific tissue in a mouse to determine the function of that targeted gene.

Previously reported approaches to achieve this were either technically cumbersome, not generally applicable, or only achieved transient knockdown of the target gene.

"Having a tool that will allow us to knockdown the expression of any given gene in any specific tissue or cell type represents a significant advance in the field," says the study's lead investigator, Miles Wilkinson, Ph.D., a professor in the Department of Immunology.

For example, this method could potentially be used in humans "to knockdown the expression of mutant or overexpressed genes that cause human diseases, including cancer," Wilkinson says. "Scientists and clinicians can use it to reduce the expression of the target gene in a single or limited numbers of cell types or tissues, thereby reducing side effects."

Equally, the technique can help researchers determine the function of a single gene in a single tissue, which "is potentially a powerful investigative tool," Wilkinson says. "By silencing a particular gene in a specific tissue, you can learn what the function of that gene is in that particular tissue without blocking its essential functions in other tissues."

In their study, Wilkinson and his research team demonstrated how well their tool worked by silencing the WT1 tumor suppressor gene in the testes of mice. They found this gene is important in the production of healthy sperm by encoding a regulatory protein called a transcription factor that contr ols the formation of adherens junctions, or the cell-to-cell contacts between nurse cells and the germ cells that ultimately become sperm.

Using RNAi to silence WT1, therefore, led to the discovery that WT1 is the first transcription factor shown to regulate the formations of these junctions, Wilkinson says. "It is a transcription factor that dictates both the formation of the testes in the embryo, and the function of the testes after birth."

Researchers worldwide have been trying to harness the power of RNAi since it was discovered in 1998. RNAi rocked the world of science because of the vast implications this natural cellular control system potentially offered medicine.

RNAi is used by cells in many life forms to identify viral RNA, which often enters a cell as a double strand. The organism's own RNA, however, leaves the nucleus of cells (where it was produced by DNA) as a single strand, to be decoded by ribosomes into the proteins that perform all the work of the cell. RNAi, therefore, recognizes the double strand of viral RNA as different, and sets in motion cell machinery that destroys the invading RNA. This involves cutting up the double-stranded RNA, separating it into single strands, and destroying other single-stranded RNA molecules that are complementary to those small RNA segments.

Scientists quickly realized that if they could produce a double-stranded RNA that mimics the RNA produced by a gene they wish to silence, RNAi would do the job for them. Producing the decoy "small RNAs" that trigger RNAi has become a fairly simple process, Wilkinson says, but the difficulty has been to use these matches only in specific tissues, and to figure out a way to make this "treatment" last. The work by the M. D. Anderson team has come up with a solution that solves both problems.

The technique they developed involves use of two different "modules" that can be swapped in and out of the backbone of a vector. One is a small stem lo op designed to complement the RNA produced by the gene they wish to silence, and the other is a "promoter" that provides expression specific to the tissue they want to target. "There are whole batteries of different promoters, ones specifically for skin, or different parts of the brain, or whatever organ or tissue you are likely to want," Wilkinson says. "By swapping out either of these modules, you have the potential to silence any gene in any tissue you might want," he said.

In their study, the researchers made a vector with a promoter specific for nurse cells in the testis, so that the small RNA that is associated with WT1 is only made in this cell type, thereby reducing WT1 levels that are only in the nurse cells. Other organs, like kidney, that need WT1 to function are not affected, Wilkinson says.

"We are very excited about the potential of this approach, and hope that is solves what had become a significant roadblock to effective use of RNAi," he says.


Source:University of Texas M. D. Anderson Cancer Center

Related biology news :

1. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
2. Disease progression model of pancreatic cancer developed by Penn researchers
3. New HIV drug candidate developed in Sweden
4. Anthrax test, developed by army and CDC, receives FDA approval
5. Scientists discover that three molecules may be developed into new Alzheimers drugs
6. Portable cocaine sensor developed at UC Santa Barbara
7. Carbon nanotubes that detect disease-causing mutations developed by Pitt researcher
8. Potential vaccine developed for deadly leishmaniasis disease
9. New strategy developed to combat West Nile Virus
10. Faster, more accurate tuberculosis test developed
11. Resistance to anti-HIV drugs in Uganda developed due to drug supply problems
Post Your Comments:

(Date:11/17/2015)... Calif. , Nov. 17, 2015  Vigilant Solutions ... has joined its Board of Directors. ... Board after recently retiring from the partnership at TPG ... 107 companies with over $140 Billion in revenue.  He ... improvement across all the TPG companies, from 1997 to ...
(Date:11/12/2015)... BOSTON , Nov. 12, 2015  A golden ... for Duchenne muscular dystrophy (DMD) has provided a new ... Boston Children,s Hospital, the Broad Institute of MIT and ... Brazil . Cell, ... some dogs "escape" the disease,s effects. The Boston Children,s ...
(Date:11/11/2015)... Nov. 11, 2015   MedNet Solutions , an innovative ... clinical research, is pleased to announce that it will be ... (PCT) event, to be held November 17-19 in ... view live demonstrations of iMedNet , MedNet,s ... iMedNet has been able to deliver time and ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... ... November 25, 2015 , ... ... of Black Aerospace Professionals (OPBAP) has been formalized with the signing of a ... leaders met with OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, ...
(Date:11/24/2015)... Malaysia , Nov. 24, 2015  Asia-Pacific ... contract research organisation (CRO) market. The trend of ... in lower margins but higher volume share for ... capacity and scale, however, margins in the CRO ... Organisation (CRO) Market ( ), finds ...
(Date:11/24/2015)... VANCOUVER , Nov. 24, 2015 /CNW/ - iCo ... ICOTF), today reported financial results for the quarter ... are expressed in Canadian dollars and presented under ... the United States ," said Andrew ... "These advancements regarding iCo-008 are not only value ...
(Date:11/24/2015)... Inc., a worldwide provider of clinical research services headquartered in ... has set a new quarterly earnings record in Q3 of 2015.  ... Q3 of 2014 to Q3 of 2015.   ... the establishment of an Asia-Pacific office to ... and Mexico , with the establishment ...
Breaking Biology Technology: