Navigation Links
Tiny shock absorbers help bacteria stick around inside the body

Bacteria have hair-like protrusions with a sticky protein on the tip that lets them cling to surfaces. The coiled, bungee cord-like structure of the protrusions helps the bacteria hang on tightly, even under rough fluid flow inside the body, researchers report in the journal PLoS Biology.

A group of researchers at the University of Washington in Seattle and ETH Zurich in Switzerland have been studying how the bacterium E. coli attaches to mucous membranes in the body. In their previous research, they explained how the protrusions, known as fimbriae, have an adhesive protein called FimH at their tip that binds in an unusual way to a sugar molecule on a surface.

The FimH-sugar combination makes a "catch bond" that acts like a finger trap, and actually gets stronger as drag force is exerted on a bacterium. Rather than being swept away by fluids moving through the human body, the bacterium grips even more tightly, helping it stick around and form an infection, like those seen in the urinary tract, for instance. The catch bonds release their grip when there is little or no force on the bacteria.

In new research, the scientists have learned that the mechanical properties of the bungee-like fimbriae also play a key role in the tenacity of E. coli clinging to mucousal surfaces. The tiny fiber-like protrusions are made up of interlocking protein segments in a tightly coiled helix shape, like a seven-nanometer-wide Slinky toy. The researchers found that under force, the fimbriae stretch to many times their original length as the protein segments uncoil one by one. If the force on them drops, the fimbriae coils are compressed, keeping tension on the bond between the bacterium and the mucous membrane.

"The fimbriae uncoil and recoil to dampen sudden changes in forces caused by rough and rapidly changing flow conditions," explained study co-author Dr. Viola Vogel, professor in the Department of Materials at ETH Zurich. This process maintains an optimal force required to keep the finger trap-like FimH anchor from breaking loose.

"This system is similar to a set of shock absorbers on your car that dampen turbulent forces caused by bumpy road conditions," added study co-author Dr. Wendy Thomas, assistant professor of bioengineering at the UW.

The researchers found that fimbrial uncoiling and recoiling events balance each other at an intermediate force level that corresponds to the force at which the sticky protein tip forms the most stable bond with the surface. Thus, the mechanical and adhesive features of the system evolved together to help the bacteria persist in tough environments inside a host animal or person.

"Research on these fimbriae uncovers something that's essentially a mechanical nanotechnological device created by nature, and gives us the opportunity to adapt such a system for biotechnological and even other technical uses," said study co-author Dr. Evgeni Sokurenko, associate professor of microbiology at the UW and a principal investigator at the NIH Bioengineering Research Partnership that primarily funded the project. "It also improves our understanding of how to fight bacteria that persist in turbulent environments, like the human urinary tract or intestines."


'"/>

Source:University of Washington


Related biology news :

1. Researches discover gene critical for protection against septic-shock-induced death
2. Heat-shock protein vaccine reduces alveolar bone loss
3. Its in your head: The brains own globin defends you from shock and stroke
4. Anti-bacterial additive widespread in U.S. waterways
5. A bacterial genome reveals new targets to combat infectious disease
6. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
7. Scientists discover that host cell lipids facilitate bacterial movement
8. Family trees of ancient bacteria reveal evolutionary moves
9. Drug-resistant bacteria on poultry products differ by brand
10. Programmable cells: Engineer turns bacteria into living computers
11. NASA links nanobacteria to kidney stones and other diseases
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/22/2017)... 2017   Neurotechnology , a provider of ... announced the release of the SentiVeillance 6.0 ... facial recognition using up to 10 surveillance, security ... The new version uses deep neural-network-based facial detection ... utilizes a Graphing Processing Unit (GPU) for enhanced ...
(Date:3/16/2017)... , March 16, 2017 CeBIT 2017 - Against identity fraud ... Continue Reading ... Used combined in one project, multi-biometric solutions provide a ... Used combined ... ...
(Date:3/7/2017)... March 7, 2017   HireVue , the leading ... companies identify the best talent, faster, today announced the ... Officer (CSO) and Diana Kucer as Chief ... seasoned executive team poised to drive continued growth in ... a year of record bookings in 2017. ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... ... March 27, 2017 , ... Biopsies ... small, heterogeneous samples with limited tumor content in a large background of normal ... such as the need for reliable detection of low abundance somatic mutations, particularly ...
(Date:3/27/2017)... The new research portal will give ... reports on Valero Energy , offering extensive market research ... ... (Logo: http://photos.prnewswire.com/prnh/20160330/349511LOGO) The latest trend gaining ... Ethanol today, even though touted as a green alternative to ...
(Date:3/27/2017)... DarioHealth Corp. (NASDAQ: DRIO), a leading global ... solutions, today announced that it is now offering a ... consumers who want to have their DarioHealth products reimbursed ... alliance agreements with partners across the U.S. who will ... approved, will supply and bill the customer,s insurance for ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... report to their offering. ... This report analyzes the Global market for Human ... forecasts are provided for the period 2014 through 2022. Market data ... The report profiles 25 companies including many key and niche ...
Breaking Biology Technology: