Navigation Links
Tiny roundworm's telomeres help scientists to tease apart different types of aging

The continual and inevitable shortening of telomeres, the protective "caps" at the end of all 46 human chromosomes, has been linked to aging and physical decline. Once they are gone, so are we. But there are more ways than one to grow old.

Researchers at Salk Institute for Biological Studies demonstrate for the first time that the roundworm Caenorhabditis elegans succumbs to the trials of old age although its telomeres are still long, and moves with a youthful spring in its crawl despite short telomeres, they report in PLoS Genetics, available online now.

In the past, preventing telomere shortening has often been portrayed as the key to preventing aging and living longer. In their study, Salk scientists Jan Karlseder, an assistant professor in the Regulatory Biology Laboratory, and Andrew Dillin, an assistant professor in the Molecular and Cell Biology Laboratory, provide a much more nuanced view of telomeres and the process of cellular and organismal aging.

"Some long-lived species like humans have telomeres that are much shorter than the telomeres in species like mice, which live only a few years. Nobody yet knows why. But now we have conclusive evidence that telomeres alone do not dictate aging and lifespan," says Karlseder.

Each time a cell divides, its telomeres get shorter, a process called replicative or cellular aging. Some have likened this progressive erosion of telomeres to a genetic biological clock that winds down over time, leading to a gradual decline in our mental and physical prowess. Yet, C. elegans, a tiny creature, which spends the better part of its adult life without a single dividing cell in its body, still shows signs of old age and eventually dies, raising intriguing questions.

Are telomeres in non-dividing cells eroding slowly over time? If so, will worms with longer telomeres live longer? If not, how do worm cells and by extension non-dividing human cells, such as nerve cells, keep track of their biol ogical age? To answer these vexing questions, Karlseder, who is interested in telomeres, teamed up with Dillin, who studies lifespan and aging in C. elegans.

Researchers use this 1 millimeter-long soil roundworm that feeds on bacteria mainly because it is simple, easy to grow in bulk populations, and is quite convenient for genetic analysis.

When these scientists began their work almost nothing was known about worm telomeres. "We had to start at the very beginning. But now we know that C. elegans is the perfect model organism to study telomere biology since their regulation is similar to human telomeres," says first author Marcela Raices, a post-doctoral researcher in Karlseder's lab.

Many cells in our body keep dividing throughout life (e.g., those that line our digestive tract, blood, and immune cells) because they must be replaced over time. When these cells' telomeres reach a critically short length, however, they can no longer replicate. The cell's structure and function begin to fail as it enters this state of growth arrest, called replicative senescence.

"But even in very old people, blood cells, which divide continuously, don't have critically short telomeres. In humans and, as we know now, in worms, telomere length is certainly not a limiting factor for lifespan," says Karlseder.

The Salk team, which also included graduate student Hugo Maruyama, found that despite the close correlation of telomere length and cellular senescence in mammalian cells, worms with long telomeres were neither long lived, nor did worm populations with short telomeres exhibit a shorter life span. On the other hand, long-lived and short-lived mutant worms could have them either way without any effect on their lifespan. When Raices monitored telomere length over the full lifespan of worms and under stress, a situation reported recently at another laboratory to shorten telomeres in humans, she found absolutely no change.

"For successful a ging you have to control both, aging in your dividing cells, which hinges on telomere maintenance, but also aging in your non-dividing cells. We thought that telomeres might play a role in the later but that's clearly not the case," says Dillin. "What is probably playing a role in the other half of aging is the insulin signaling pathway, proper mitochondrial function and dietary restriction," he reasons.

Several types of cells in our body, such as mature nerve cells in the brain, oocytes, skeletal and heart muscle cells don't actively divide but stay put just like the cells in adult worms.

"That makes our findings relevant for age-related decline in mental function and neurodegenerative diseases, such as Alzheimer's," says Karlseder. "Making people live longer is not enough, we want them to grow old healthy," he adds.

"To prevent accelerated aging in an organism, you need to have both proper telomere maintenance and those other genetic pathways intact," says Dillin. "If you wanted to develop a drug to combat aging it wouldn't be enough to target telomeres, you would also have to target these other genetic pathways."


'"/>

Source:Salk Institute


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and ... they have entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas ... tools for gene editing across all applications. , Under the terms of the ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit ... 7th and 8th June 2018 in San Francisco, CA. The Summit brings together current ... several distinguished CEOs, board directors and government officials from around the world to address ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
Breaking Biology Technology: