Navigation Links
Tiny RNA molecules fine-tune the brain's synapses

Non-coding regions of the genome ?those that don't code for proteins ?are now known to include important elements that regulate gene activity. Among those elements are microRNAs, tiny, recently discovered RNA molecules that suppress gene expression.

Increasing evidence indicates a role for microRNAs in the developing nervous system, and researchers from Children's Hospital Boston now demonstrate that one microRNA affects the development of synapses ?the points of communication between brain cells that underlie learning and memory. The findings appear in the January 19th issue of Nature.

"This paper provides the first evidence that microRNAs have a role at the synapse, allowing for a new level of regulation of gene expression," says senior author Michael Greenberg, PhD, Director of Neuroscience at Children's Hospital Boston. "What we've found is a new mechanism for regulating brain function."

The brain's ability to form and refine synapses allows organisms to learn and respond to their environment, strengthening important synaptic connections, forming new ones, and allowing unimportant ones to weaken. Experiments in Greenberg's lab, done in rats, showed that a microRNA called miR-134 regulates the size of dendritic spines, the protrusions from a neuron's dendrites where synapses form. When neurons were exposed to miR-134, spine volume significantly decreased, weakening the synapse. When miR-134 was inhibited, spines increased in size, strengthening the synapse.

Further experiments showed that miR-134 acts by inhibiting expression of a gene called Limk1, which causes dendritic spines to grow. When neurons were exposed to a growth factor known as brain-derived neurotrophic factor (BDNF), this inhibition was overcome and Limk1 became active again, enhancing spine growth.

Greenberg believes that miR-134 ?and other microRNAs his lab is studying ?may play a role in fine-tuning cognitive function by selectively controlling synapse de velopment in response to environmental stimuli. "A single neuron can form a thousand synapses," says Greenberg, also a professor of neurology and neuroscience at Harvard Medical School. "If you could selectively control what's happening at one synapse without affecting another, you greatly increase the information storage and computational capacity of the brain."

Greenberg also speculates that miR-134 may be relevant to disorders such as mental retardation and autism. He notes that loss of Limk1 due to a chromosomal deletion is associated with Williams syndrome, and that the BDNF pathway that activates Limk1 includes proteins that are disabled in tuberous sclerosis and Fragile X syndrome. All three genetic disorders can cause cognitive impairment and autistic-like behaviors.


'"/>

Source:Children's Hospital Boston


Related biology news :

1. Inflammatory molecules released by pollen trigger allergies
2. Medical molecules designed to respond to visible light that can penetrate tissue
3. DNA constraints control structure of attached macromolecules
4. Scientists discover that three molecules may be developed into new Alzheimers drugs
5. Physical and functional interaction of key cell growth molecules linked to cancer
6. Scientists discover new way to look at how molecules twist and turn on water
7. Scientists learn to predict protein-stabilizing ability of small molecules
8. Convergent evolution of molecules in electric fish
9. Micro-boxes of water used to study single molecules
10. Researchers unveil strategy for creating actively-programmed anti-cancer molecules
11. Biological motors sort molecules one by one on a chip
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/30/2017)... 2017 Today, American Trucking Associations announced ... face and eye tracking software, became the newest ... "Artificial intelligence and advanced sensing ... a driver,s attentiveness levels while on the road.  ... detect fatigue and prevent potential accidents, which could ...
(Date:5/23/2017)... 2017  Hunova, the first robotic gym for the rehabilitation and functional ... in Genoa, Italy . The first 30 robots will ... USA . The technology was developed and patented at ... IIT spin-off Movendo Technology thanks to a 10 million euro investment from ... click: ...
(Date:5/6/2017)... , May 5, 2017 ... just announced a new breakthrough in biometric authentication ... exploits quantum mechanical properties to perform biometric authentication. These ... smart semiconductor material created by Ram Group and ... finance, entertainment, transportation, supply chains and security. Ram ...
Breaking Biology News(10 mins):
(Date:10/7/2017)... ... October 06, 2017 , ... ... for microscopy and surface analysis, Nanoscience Instruments is now expanding into Analytical ... broad range of contract analysis services for advanced applications. Services will leverage ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 ... of three scientists, Jacques Dubochet, Joachim Frank ... developments in cryo-electron microscopy (cryo-EM) have ... within the structural biology community. The winners worked ... can now routinely produce highly resolved, three-dimensional images ...
(Date:10/6/2017)... ... October 06, 2017 , ... On Tuesday, October ... on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The featured speaker ... is free and open to the public, but registration is required. , WHAT: ...
(Date:10/5/2017)... ... ... Understanding the microbiome, the millions of bacteria that live in our guts, is ... the newest exhibit on display at the University City Science Center’s Esther Klein Gallery ... of the gut microbiome. , Gut Love opens October 12, 2017, and runs ...
Breaking Biology Technology: