Navigation Links
The power of one: A simpler, cheaper method for cell fusion

It's not easy to make one plus one equal one. But biological engineer Chang Lu has done just that with a new and cheaper method to electrically fuse cells - a vital technology for studying stem cells, creating clones and finding disease antibodies.

"The only current method for electrofusion requires a very expensive and specialized electrical pulse generator," said Lu, a professor of agricultural and biological engineering at Purdue University. "My device uses constant DC voltage and would enable researchers to fuse one pair of cells at a time."

Electrofusion - the process of using electric shocks to fuse two or more living cells - is a growing technology with a wide variety of applications in research, biotechnology and medicine. The technique is integral to stem cell research, where it affords researchers greater insight into how genes guide protein synthesis. It also may be used to create large quantities of different disease-specific antibodies and has helped scientists clone mammals.

The current technique for electrofusion requires a pricey electrical pulse-generator, which could cost as much as $13,000. Lu's technology, on the other hand, uses a $100 DC power supply, which, unlike the specialized generator, can be used to power other laboratory equipment. And because of its microscale dimensions, Lu said his technology requires significantly smaller sample volumes.

"This could be very important," he said. "For example, if you had to supply cells from your own body or from another live organism, you would want to take as few as possible."

Lu's device consists of fluid-filled channels inside a tiny microchip. Prior to fusion, cells are engineered to bond to one another by using a minor chemical treatment. Cells are first placed in an aqueous chamber within the chip, where they pair off. In contact with one another but not yet fused, the cells flow towards the only exit, which is a miniscule gap that channels elect ricity from one pole to the other. Passing through this narrow section, cells are subjected to a strong electrical field that causes them to become destabilized and fuse together.

In one of electrofusion's applications, scientists can fuse antibody-producing cells from the spleen (beta cells) with cancer cells in order to create a virtually immortal, antibody-producing hybrid, called a hybridoma. By manipulating the beta cells prior to fusion, scientists can create thousands of different hybridomas that produce antibodies effective against different viruses and diseases like cancer.

Lu's research regarding the development and use of this technology was published online Monday (Dec. 4) in the journal Applied Physics Letters and is scheduled to appear in print later this month. Graduate student Jun Wang was a co-author.

One downside to the current technique for electrofusion is that researchers have relatively little control over how many cells they fuse at once; the technique works by aligning an uncertain number of cells along an electrical field before zapping them with pulses of electricity. Lu's technology is more precise.

"In my device, the narrow section in the microfluidic channel is so small that only two to three cells fit into it," Lu said.

Lu said he believes that his device may be developed to have a higher throughput than current methods. Although Lu's technology currently fuses single pairs at once, it may be expanded so that multiple devices simultaneously fuse cells in parallel.

"In time, this could drastically increase the rate of cell fusion," he said.

Lu has shown that his technology has a success rate comparable to current technology; about 30 percent to 40 percent of the cells are properly fused when the operational parameters were tuned up.

"We are not saying that our technology is necessarily better, but it is definitely cheaper and has other benefits," he said. "Ho pefully, with our technology many more scientists will be able to experiment with the procedure. I believe that could open up a lot of exciting research opportunities."

Lu demonstrated the efficacy of his device using Chinese hamster ovary cells, which were chemically engineered to link prior to fusion. He said his technology could be developed to fuse different types of cells in the future.

Purdue's Research Foundation provided funding for Lu's research, and Lu has submitted a U.S. patent application based on the technique. He plans to continue to his work on the technology at some point in the future.

Source:Purdue University

Related biology news :

1. Scientists Propose Sweeping Changes to Naming of Bird Neurosystems to Acknowledge Their True Brainpower
2. New drug shows promise as powerful anticancer agent
3. The evolutionary triumph of flower power
4. Researchers find promising cancer-fighting power of synthetic cell-signaling molecule
5. High-powered gene profiles provide clues to genes involved in common form of lung cancer
6. Mosaic mouse technique offers a powerful new tool to study diseases and genetics
7. Its electric: Cows show promise as powerplants
8. Lance Armstrong through a physiological lens: hard training boosts muscle power 8%
9. Researchers find ways to turn manure into power
10. License to kill enables powerful immune attack cells in mice
11. Nanoparticles, nanoshells, nanotubes: How tiny specks may provide powerful tools against cancer

Post Your Comments:

(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/15/2016)... ALBANY, New York , June 15, 2016 ... published a new market report titled "Gesture Recognition Market ... Trends and Forecast, 2016 - 2024". According to the ... at USD 11.60 billion in 2015 and is ... and reach USD 48.56 billion by 2024.  ...
(Date:6/2/2016)... The Department of Transport Management (DOTM) ... million US Dollar project, for the , Supply ... Enrolment, and IT Infrastructure , to ... implementation of Identity Management Solutions. Numerous renowned international vendors participated ... was selected for the most compliant and innovative ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software as ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and video ... trial team. , Using the CONSULT module, patients and physicians can schedule a face ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader ... “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, ... providing practical tips, tools, and strategies for clinical researchers. , “The landscape of ...
Breaking Biology Technology: