Navigation Links
The molecular post office inside the cell

For most proteins, there is a particular place inside a cell where they carry out their function. But how do they get there? Scientists from the Charité Berlin, the University of Heidelberg, and the Max Planck Institute for Molecular Genetics in Berlin have now been able to visualize the structure of a "molecular machine" involved in protein sorting using cryo-electron microscopy and single particle analysis.

This "machine" is made up of a single active ribosome, plus a special signal recognition protein and a matching receptor. The scientists have shown that when the three proteins interact, certain areas open up on the ribosome, which allows the ribosome to dock onto another complex. The later complex, which is called translocon complex, takes over the job of transferring a newly produced protein through the membrane. Knowing the structure of the molecular machine helps scientists to understand how secretory and membrane proteins in a cell are expressed and sorted (Science, May 5, 2006).

Sorting proteins is fundamental to the gene expression of every organism - from bacteria to humans. Particularly important during biosynthesis is sorting secretory and membrane proteins, which have to find the way to their final destination inside or outside the cell. Secretory proteins are those that later on leave the cell, like anti-bodies. Membrane proteins are proteins embedded into the cell's membranes - for example, signalling receptors. One particular molecular complex is important in protein sorting. It is made from an active ribosome - that is, the protein synthesis machine in the cell - called the signal recognition particle (SRP), and its corresponding receptor. It is the structure of this complex that the scientific team is now able to describe.

The key element to this machine's functioning is a signal sequence located at the N-terminal end of the protein to be sorted. The sequence acts as a kind of "postal code" in the cell. The SRP reads th e sequence as soon as the newly built protein chain leaves the ribosome. The SRP binds to the ribosome and directs it, together with the SRP receptor, to what is called the "translocon complex" in the membrane of the endoplasmic reticulum. The translocon complex is made of a "protein conducting channel" and other membrane proteins. The ribosome is anchored at the translocon and continues with protein biosynthesis.

Notable is that the ribosome can no longer bind to the translocon as soon as the SRP has bound to the ribosome. The ribosome needs additional support from the SRP receptor, which it transfers from the SRP to the translocon. Now that scientists understand the structure of the complex, they can see how the receptor interacts with ribosome and SRP and replaces parts of the SRP molecule. In this way, specific sites are made available for the translocon, which allows it to bind to the ribosome. Understanding this key event during protein sorting is essential to understanding how secretory and membrane proteins are expressed in a cell.


'"/>

Source:Max-Planck-Gesellschaft


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Source of molecular triggers in cutaneous T cell lymphoma identified
3. Plants, animals share molecular growth mechanisms
4. NYU researchers simulate molecular biological clock
5. Scientists reveal molecular secrets of the malaria parasite
6. Scientists identify molecular events that drive cell senescence
7. Researchers discover molecular mechanism that desensitizes us to cold
8. Findings have implications for tracking disease, drugs at the molecular level
9. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
10. At the molecular level, the predator is the prey
11. By creating molecular bridge, scientists change function of a protein
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... -- Research and Markets has announced the addition of ... 2021" report to their offering. ... The biometric vehicle access system market, in ... 14.06% from 2016 to 2021. The market is estimated to be ... Million by 2021. The growth of the biometric vehicle access system ...
(Date:12/15/2016)... , Dec 15, 2016 ... Research and Markets has announced the addition ... offering. The report forecasts the global military biometrics market ... The report has been prepared based on an in-depth market ... and its growth prospects over the coming years. The report also includes ...
(Date:12/12/2016)... -- Researchers at Trinity College, Dublin, are opening up ... material with Silly Putty. The mixture (known as "G-putty") ... sense pulse, blood pressure, respiration, and even the ... The research team,s findings were published Thursday in ... Due ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... Jan. 17, 2017   Pulmatrix, Inc . (NASDAQ: ... developing innovative inhaled therapies to address serious pulmonary diseases, ... infections in the lungs of CF patients, PUR1900, has ... by the U.S. Food & Drug Administration. ... to speed the development of novel drugs against important ...
(Date:1/17/2017)...  Only nine percent of U.S. consumers believe pharmaceutical ... 16 percent believe health insurance companies do, according to ... of U.S. adults believe health care providers (such as ... hospitals (23%). "We are in the midst ... , vice president of reputation management and public affairs ...
(Date:1/17/2017)... (PRWEB) , ... January 17, 2017 , ... Pono ... balanced, peaceful and healthy lifestyle, announced today the official launch of its much-anticipated Pono ... the mind. , In development for over a year, the patented Pono ...
(Date:1/17/2017)... ... January 17, 2017 , ... Diagenode, ... recently announced a collaboration with the Heidelberg University Hospital and the German Cancer ... preparation, following the company’s successful launch of its CATS (Capture and Amplification ...
Breaking Biology Technology: