Navigation Links
The evolution of food plants: Genetic control of grass flower architecture

Scientists are interested in understanding genetic control of grass inflorescence architecture because seeds of cereal grasses (e.g. rice, wheat, maize) provide most of the world's food.

Grass seeds are borne on axillary branches, whose branching patterns dictate most of the variation in form seen in the grasses. Maize produces two types of inflorescence; the tassel (male pollen-bearing flowers) and the ear (female flowers and site of seed or kernel development). The tassel forms from the shoot apical meristem after the production of a defined number of leaves, whereas ears form at the tips of compact axillary branches. Normal maize ears are unbranched, and tassels have long branches only at their base.

Many different genes control the architecture as well as the nutrient content in cereal grasses. The ramosa2 (ra2) mutant of maize has increased branching of inflorescences relative to wild type plants, with short branches replaced by long, indeterminate ones, suggesting that the ra2 gene plays an important role in controlling inflorescence architecture. A recent publication in The Plant Cell (Bortiri et al.) reports that ra2 encodes a putative transcription factor, or protein that controls the expression of other genes. Scientists involved in the study were Esteban Bortiri, George Chuck, and Sarah Hake of the USDA Plant Gene Expression Center and University of California at Berkeley and colleagues Erik Vollbrecht of Iowa State University, Torbert Rocheford of the University of Illinois, and Rob Martienssen of Cold Spring Harbor Laboratory in New York.

The group found that the ra2 gene is transiently expressed early in development of the maize inflorescence. Analysis of gene expression in a number of different mutant backgrounds placed ra2 function upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in regulating the patterning of stem cells in axillary meristems.

Said Dr. Hak e, "we think that ra2 is critical for shaping the initial steps of inflorescence architecture in the grass family, because the ra2 expression pattern is conserved in other grasses including rice, barley, and sorghum".

Perspective: Branching Out: The ramosa Pathway and the Evolution of Grass Inflorescence Morphology

In an accompanying Current Perspective Essay, Paula McSteen of The Pennsylvania State University discusses the ramosa pathway in the context of the evolution of plant development.

"The grasses are a premier model system for evolution of development studies in higher plants: there is tremendous diversity in inflorescence morphology, the phylogeny is well understood and many species are genetically transformable so hypotheses can be tested. Maize in particular is an excellent model system for studying selection as it was domesticated from its wild ancestor teosinte a mere 10,000 years ago. Because transcription factors control many developmental processes, it is common to find that diversification of morphology between closely related organisms has involved changes in how transcription factors are regulated or how transcription factors interact with their target genes. An understanding of the ramosa pathway in the grass family will be important in understanding the evolution of the grasses and furthermore will provide an understanding of the mechanisms of evolution of development."

Dr. McSteen commented "because ra2 has increased branching it might have the potential to lead to increased seed number and yield in some cereal grasses. This might not be true for maize because of the structure of the ear, but one can imagine that a ra2 mutant of barley, rice or sorghum might have more branches, and thus produce more seed".


'"/>

Source:American Society of Plant Biologists


Related biology news :

1. Molecular biology fills gaps in knowledge of bat evolution
2. Same mutation aided evolution in many fish species, Stanford study finds
3. Researchers trace evolution to relatively simple genetic changes
4. Family trees of ancient bacteria reveal evolutionary moves
5. Great White shark evolution debate involves WSU Lake Campus geology professor
6. Revolutionary nanotechnology illuminates brain cells at work
7. The evolutionary triumph of flower power
8. MicroRNAs play a big part in gene regulation - and evolution
9. Enlisting genomics to understand flu evolution
10. Variation in HIVs ability to disable host defenses contributes to rapid evolution
11. Scientists track stealth DNA elements in primate evolution
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/15/2016)... 15, 2016  There is much more to innovative ... the engine. Continental will demonstrate the intelligence of today,s ... . Through the combination of the keyless entry ... biometric elements, the international technology company is opening up ... authentication. "The integration of biometric elements brings ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/8/2016)... 8, 2016  Singulex, Inc., the leader in Next ... into a license and supply agreement with Thermo Fisher ... provides Singulex access to Thermo Scientific BRAHMS PCT (Procalcitonin), ... is used to diagnose systemic bacterial infection and sepsis ... to aid in assessing the risk of critically ill ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... January 18, 2017 , ... ... today announced that it has submitted a 510(k) to the FDA, requesting clearance ... MYOLYN’s patent-pending functional electrical stimulation (FES) technology. , The submission marks a ...
(Date:1/18/2017)... , ... January 18, 2017 , ... ... 24th, 2017, to sell research and genetic testing lab equipment from two different ... the Northwest and Northeast regions of the United States. This 1-day online auction ...
(Date:1/18/2017)... DIEGO , Jan. 18, 2017 Shareholder ... an investigation into whether the board members of CoLucid ... fiduciary duties in connection with the proposed sale of ... a biopharmaceutical company that develops small molecules for the ... 2017, CoLucid announced it had signed a definitive merger ...
(Date:1/18/2017)... TORONTO , Jan. 18, 2017 /PRNewswire/ - ... life sciences and diagnostics company that develops and ... diagnostics ("SQI" or the "Company"), today announced that ... Markets Inc. ("Kingsdale"), has resigned from its Board ... recent changes to securities regulations that have limited ...
Breaking Biology Technology: