Navigation Links
Targeting tumors the natural way

By mimicking Nature's way of distinguishing one type of cell from another, University of Wisconsin-Madison scientists now report they can more effectively seek out and kill cancer cells while sparing healthy ones.

The new tumor targeting strategy, presented today (March 25) at the annual national meeting of the American Chemical Society, cleverly harnesses one of the body's natural antibodies and immune responses. "The killing agent we chose is already in us," says UW-Madison chemistry professor Laura Kiessling, who led the work with postdoctoral researcher Coby Carlson. "It's just not usually directed toward tumor cells."

In a series of cell-based experiments, the researchers' system recognized and killed only those cells displaying high levels of receptors known as integrins. These molecules, which tend to bedeck the surfaces of cancer cells and tumor vasculature in large numbers, have become important targets in cancer research.

In contrast, an established tumor-homing agent linked to the cell toxin doxorubicin destroyed cells even when they expressed very little integrin, indicating this strategy has the potential to kill cancerous and healthy cells indiscriminately.

"This study suggests that the cell recognition mode we used can direct an endogenous immune response to destroy cancer cells selectively," says Kiessling. "We think this could lead to a new class of therapeutic agents not only for cancer but also for other diseases involving harmful cells."

Cancer cells typically display higher levels of certain receptors on their surfaces than do normal cells, a fact that allows scientists to pinpoint tumor cells lurking among the body's scores of cell types. A popular approach employs a cell-binding agent, such as a monoclonal antibody, that is powerfully attracted to the target receptor and holds fast to any cell displaying it.

Although this strategy has benefits, it's not natural, says Kiessling. Cell recogni tion in living systems instead involves binding agents that attach only weakly to any single target receptor, and thus stick to cells only when several receptors are displayed together. These weak "multivalent" interactions cut down on cases of mistaken identity, because if the agent contacts the wrong cell type, it can be easily displaced.

The team got the idea to mimic this process from efforts to transplant pig organs into primates. The surfaces of most mammalian and bacterial cells express large amounts of a carbohydrate, called alpha-Gal in scientific shorthand, while the cells of humans and other higher primates do not. What humans and primates do produce in abundance is an antibody against the carbohydrate, called anti-Gal.

When scientists tried transplanting pig organs into primates, the anti-Gal antibodies bound to the alpha-Gal on the organ's cells, unleashing a potent immune response that caused immediate organ rejection. But true to natural cell recognition, the immune response occurs only when clusters of many alpha-Gal molecules are present for anti-Gal to bind with.

Armed with this knowledge, Kiessling's group modified an agent known to bind tightly to integrin and tethered it to alpha-Gal. When they mixed this molecule with cells displaying high levels of integrin, the agent, by attaching to the receptor, decorated the cells with large amounts of alpha-Gal. In cell cultures containing human serum, the alpha-Gal then elicited the cell-destroying immune reaction.

In cells with low concentrations of integrin, the agent still bound, but the resulting levels of alpha-Gal weren't sufficient to elicit the immune response, and the cells survived. The same wasn't true if the cell-binding agent delivered doxorubicin to cells instead: They were killed regardless of the amount of integrin they carried.

Because target receptors on cancer cells usually reside on healthy cells, too - albeit in lower numbers - therapi es aimed at these receptors are always expected to have debilitating side effects. That's why Kiessling's approach holds such promise.

"What we've shown is that you don't need a receptor that's found solely on tumor cells," she says. "You just need one that's found in significantly higher numbers on cancerous cells than on normal ones."


'"/>

Source:University of Wisconsin-Madison


Related biology news :

1. Targeting a key enzyme with gene therapy reversed course of Alzheimers disease in mouse models
2. Best of both worlds -- Targeting a single gene could inhibit bone decay and stimulate bone growth
3. Targeting sugar on blood vessels may inhibit cancer growth
4. Mouse brain tumors mimic those in human genetic disorder
5. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
6. Pulsating ultrasound enhances gene therapy for tumors
7. NSAID drug protects against intestinal tumors in mice, despite poor diet and gene losses
8. Vaccine targets tumors where they live
9. Breast tumors in mice eradicated using cancer vaccine
10. Optimizing cell therapy against tumors is a balancing ACT
11. A new link between stem cells and tumors
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/27/2017)... , Feb. 27, 2017   Strategic Cyber Ventures ... it has led a $3.5 million investment in  Polarity ... Strategic Cyber Ventures is DC based and is led ... Hank Thomas . Ron Gula , also a ... also participated in this series A round of funding. ...
(Date:2/24/2017)...  EyeLock LLC, a leader of iris-based identity ... biometric solution on the latest Qualcomm® Snapdragon™ 835 ... World Congress 2017 (February 27 – March ... 3, Stand 3E10. The Snapdragon ... platform—a combination of hardware, software and biometrics ...
(Date:2/21/2017)... PORTLAND, Ore. , Feb. 22, 2017 ... Family of Companies (Avamere Health Services, Infinity Rehab, Signature ... research study that will apply the power of IBM ... living and health centers. By analyzing data streaming from ... insights into physical and environmental conditions, and obtain deeper ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... March 22, 2017   VWR ... of product and service solutions to laboratory ... has acquired EPL Archives, Inc., an international ... the entire regulated product research, development and ... storage and ancillary services. EPL Archives is ...
(Date:3/22/2017)... San Diego, Calif. (PRWEB) , ... March 21, ... ... Frame on Kickstarter , more than tripling its goal and raising over ... and low-maintenance vertical garden that grows nutritious veggies & herbs fast, easy, and ...
(Date:3/22/2017)... , ... March 22, 2017 , ... March 22, 2017...Council ... for another green revolution, one that utilizes technological innovation in smart, sustainable ways. Humans ... of life such as aesthetics and environmental stability. This paper is the first in ...
(Date:3/20/2017)... ... March 20, 2017 , ... SSCI and Whitehouse Laboratories, divisions of Albany Molecular ... Sponsored by the Parenteral Drug Association (PDA), the New York Interphex Show will ... in attendance and more than 625 exhibitors, the educational and networking opportunities are extremely ...
Breaking Biology Technology: