Navigation Links
T-ray breakthrough could make detecting disease far easier

A breakthrough in the harnessing of 'T-rays' - electromagnetic terahertz waves - which could dramatically improve the detecting and sensing of objects as varied as biological cell abnormalities and explosives has been announced.

Researchers at the University of Bath, UK, and in Spain have said they have found a way to control the flow of terahertz radiation down a metal wire. Their findings are set out in a letter published in the current journal Physical Review Letters.

Terahertz radiation, whose frequency is around one thousand billion cycles a second, bridges the gap between the microwave and infrared parts of the electromagnetic spectrum.

Materials interact with radiation at T-ray frequencies in different ways than with radiation in other parts of the spectrum, making T-rays potentially important in detecting and analysing chemicals by analysing how they absorb T-rays fired at them.

This would allow quality control of prescribed drugs and detection of explosives to be carried out more easily, as many complex molecules have distinctive signatures in this part of the electromagnetic spectrum.

T-ray applications are presently limited by the relatively poor ability to focus the rays, which is achieved using the conventional means of lenses and mirrors to focus the radiation. This limits the spot size of focused T-rays to a substantial fraction of a millimetre and this has made studies of small objects such as biological cells with high resolution are virtually impossible.

But in their work the researchers found that although ordinary metal wire would not guide T-rays very well, if a series of tiny grooves was cut into the wire, it would do so much more effectively. If such a corrugated metal wire is then tapered to a point it becomes possible to very efficiently transport radiation to a point as small as a few millionths of a metre across.

This might, for example, lead to breakthroughs in examining very small objects such as the interior of biological cells where it might be possible to detect diseases or abnormalities. T-rays could also be directed to the interior of objects which could be useful in applications like endoscopic probing for cancerous cells or explosive detection.

"This is a significant development that would allow unprecedented accuracy in studying tiny objects and sensing chemicals using T-rays" said Dr Stefan Maier, of the University of Bath's Department of Physics, who leads the research.

"Metal wire ordinarily has a limited ability to allow T-rays to flow along it, but our idea was to overcome this by corrugating its surface with a series of grooves, in effect creating an artificial material or 'metamaterial' as far as the T-rays are concerned."

"In this way, the T-rays can be focused to the tip of the wire and guided into confined spaces or used to detect small objects, with important implications for disease detection or finding explosive that are hidden."

Source:University of Bath

Related biology news :

1. T-rays: New imaging technology spotlighted by American Chemical Society
2. Recent breakthroughs in common adult leukemia highlighted in New England Journal of Medicine
3. MUHC researchers make cancer target breakthrough
4. Major breakthrough in the treatment of cancers and infectious diseases
5. Researchers report breakthrough against world’s deadliest viruses
6. Max Planck researchers make a breakthrough in plant stem cell research
7. Nanotech tools yield DNA transcription breakthrough
8. Replacing insulin is top-ranked breakthrough foreseen for health in developing world
9. St. Jude announces breakthrough in eye cancer treatment
10. Stanford scientists make major breakthrough in regenerative medicine
11. Research on grey mould offers possible breakthrough in tomato cultivation

Post Your Comments:

(Date:4/15/2016)... 2016  A new partnership announced today will ... decisions in a fraction of the time it ... high-value life insurance policies to consumers without requiring ... Force Diagnostics, rapid testing (A1C, Cotinine and HIV) ... pressure, weight, pulse, BMI, and activity data) available ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
(Date:3/29/2016)... BOCA RATON, Florida , March 29, 2016 /PRNewswire/ ... ("LegacyXChange" or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect ... Synthetic DNA in ink used in a variety of ... preventing theft. Buyers of originally created collectibles from athletes ... authenticity through forensic analysis of the DNA. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... UAS LifeSciences, one of the leading ... UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing high ... its list of well-respected retailers. This list includes such fine stores as Whole ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... announced the launch of the Supplyframe Design Lab . Located in Pasadena, ... explore the future of how hardware projects are designed, built and brought to ...
Breaking Biology Technology: