Navigation Links
Surprising origin of cell's internal highways

Scientists have long thought that microtubules, part of the microscopic scaffolding that the cell uses to move things around in order to hold its shape and divide, originated from a tiny structure near the nucleus, called the centrosome.

Now, researchers at Vanderbilt University Medical Center reveal a surprising new origin for these cellular "highways." In the June issue of Developmental Cell, Irina Kaverina, Ph.D., and colleagues report that the Golgi apparatus -- a stack of pancake-shaped compartments that sorts and ships proteins out to their cellular destinations -- is the source of a particular subset of these microscopic fibers. The findings point to a novel cellular mechanism that may guide cell movement and possibly cancer cell invasion.

Microtubules are the largest of the three main types of filaments that make up the cytoskeleton -- a web of microscopic fibers inside the cell.

They form when two globular proteins, alpha- and beta-tubulin, polymerize into long chains, which then assemble into long, hollow tubes. In order to gain a foothold, nascent microtubule "seeds" must be anchored at a structure near the cell's nucleus called the centrosome or microtubule-organizing center (MTOC).

From the MTOC, the growing microtubules launch out in all directions to the cell's periphery. Their rapid assembly and disassembly helps transport proteins throughout the cell and generate polarized (directional) signal distribution that causes cells to move.

While microtubules in some specialized cells can originate from non-centrosomal structures, the centrosome has been considered the main origination point for microtubule "nucleation" in most cells. Until now.

"I've seen that there are lots of microtubules not attached to the centrosome," said Kaverina, assistant professor of Cell and Developmental Biology and senior author on the paper. "So I am trying to look at their origins."

The Golgi has be en suspected to function as an MTOC, explained Kaverina. However, conclusively demonstrating this was impossible before the advent of live-cell imaging techniques that could reveal the true origins of these structures.

"The Golgi apparatus is very close to the centrosome," said Kaverina. "So if you're not looking at it precisely, it is hard to distinguish between the centrosome and Golgi."

To get a close look, Kaverina and colleagues tagged the growing ("plus") ends of microtubules in human retinal epithelial cells with a fluorescent molecule, videotaped their growth and carefully followed the tracks back to their origin.

"We show that not only the centrosome, but the Golgi also makes microtubules," Kaverina said. "And unlike centrosomal microtubules, which are radial and symmetric, these microtubules are directional."

They found that microtubules originating at the Golgi are directed toward the cell "front," or the leading edge, of motile cells. Since such an orientation is needed for directional migration, Kaverina hypothesizes that this subset of microtubules may influence cell motility by facilitating the transport of proteins needed for movement to the cell front.

"This new microtubule subset that we discovered directly connects the Golgi to the cell front, so it would be very logical if these microtubules act as ‘tracks' for this delivery," she said.

In addition to identifying this novel site of microtubule nucleation, Kaverina and colleagues also examined the molecular mechanisms governing the process. They found that proteins normally associated with the plus ends of microtubules, called CLASPs, localize to a specific compartment of the Golgi (the Trans Golgi Network) and stabilize the microtubule "seeds" at the Golgi.

Golgi-originating microtubules could also be an important factor influencing how cancer cells invade distant tissues.

Because microtubules play a central role in cell division, cancer drugs like colchicine, vincristine and paclitaxel (Taxol) can block cell division by altering microtubule dynamics.

"Many classic chemotherapy strategies affect microtubules, although it's not quite clear how these drugs influence cancer cells differently than normal cells," said Kaverina. "Both microtubule regulation of proliferation and microtubule regulation of migration and invasion probably contribute to the therapeutic effects."

Therefore, further study of this new subset of microtubules might offer insight into how the invasion of cancer cells into surrounding tissues could be halted.


'"/>

Source:Vanderbilt University Medical Center


Related biology news :

1. An HIV Protein Plays a Surprising Role in Gene Activation
2. Surprising findings reported about iron overload
3. Survey Uncovers Surprising Attitudes Towards HIV Vaccine Research
4. Surprising symbiosis: Glassy-winged sharpshooter eats with friends
5. UAB scientists discover the origin of a mysterious physical force
6. An (ecological) origin of species for tropical reef fish
7. Ancient DNA helps clarify the origins of two extinct New World horse species
8. The genetic origins of corn on the cob
9. Scientists discover stem cell origin of neck and shoulders
10. Ancient DNA confirms single origin of Malagasy primates
11. Lifes origins were easier than was thought

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/20/2016)... Jan. 20, 2016  Synaptics Incorporated (NASDAQ: ... solutions, today announced sampling of S1423, its newest ... and small screen applications including smartwatches, fitness trackers, ... round and rectangular shapes, as well as thick ... with moisture on screen, while wearing gloves, and ...
(Date:1/13/2016)... --> --> ... report titled - Biometric Sensors Market - Global Industry Analysis, ... to the report, the global biometric sensors market was valued at ... US$1,625.8 mn by 2023, expanding at a CAGR of ... the biometric sensors market is expected to reach 1,799.6 ...
(Date:1/11/2016)... CHICAGO , Jan. 11, 2016  higi, ... via nearly 10,000 retail locations, web and mobile, ... than $40 million from existing investors. ... will be devoted to further innovate higi,s health ... app and web portal – including expanding services ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... ... February 11, 2016 , ... ... focused on the development and manufacture of biopharmaceuticals and therapeutics, announces an ... the 2016 BioProcess International Awards – Recognizing Excellence in the People, Organizations ...
(Date:2/11/2016)... , Feb. 11, 2016   BioInformant announces ... "Stem Cell Research Products, Opportunities, Tools, and Technologies – ... The ... the stem cell industry, BioInformant has more than a ... stem cell market, by stem cell type. This powerful ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global Stem Cells ... in Quito, Ecuador. The new facility will provide advanced protocols and state-of-the-art techniques ... the world. , The new GSCG clinic is headed by four prominent ...
(Date:2/10/2016)... , Feb. 10, 2016  The Maryland House of ... has announced that University of Maryland School of Medicine ... and University of Maryland Medical System President and CEO ... "Speaker,s Medallion," the highest honor given to the public ... Dean Reece and Mr. Chrencik for ...
Breaking Biology Technology: