Navigation Links
Surprising origin of cell's internal highways

Scientists have long thought that microtubules, part of the microscopic scaffolding that the cell uses to move things around in order to hold its shape and divide, originated from a tiny structure near the nucleus, called the centrosome.

Now, researchers at Vanderbilt University Medical Center reveal a surprising new origin for these cellular "highways." In the June issue of Developmental Cell, Irina Kaverina, Ph.D., and colleagues report that the Golgi apparatus -- a stack of pancake-shaped compartments that sorts and ships proteins out to their cellular destinations -- is the source of a particular subset of these microscopic fibers. The findings point to a novel cellular mechanism that may guide cell movement and possibly cancer cell invasion.

Microtubules are the largest of the three main types of filaments that make up the cytoskeleton -- a web of microscopic fibers inside the cell.

They form when two globular proteins, alpha- and beta-tubulin, polymerize into long chains, which then assemble into long, hollow tubes. In order to gain a foothold, nascent microtubule "seeds" must be anchored at a structure near the cell's nucleus called the centrosome or microtubule-organizing center (MTOC).

From the MTOC, the growing microtubules launch out in all directions to the cell's periphery. Their rapid assembly and disassembly helps transport proteins throughout the cell and generate polarized (directional) signal distribution that causes cells to move.

While microtubules in some specialized cells can originate from non-centrosomal structures, the centrosome has been considered the main origination point for microtubule "nucleation" in most cells. Until now.

"I've seen that there are lots of microtubules not attached to the centrosome," said Kaverina, assistant professor of Cell and Developmental Biology and senior author on the paper. "So I am trying to look at their origins."

The Golgi has be en suspected to function as an MTOC, explained Kaverina. However, conclusively demonstrating this was impossible before the advent of live-cell imaging techniques that could reveal the true origins of these structures.

"The Golgi apparatus is very close to the centrosome," said Kaverina. "So if you're not looking at it precisely, it is hard to distinguish between the centrosome and Golgi."

To get a close look, Kaverina and colleagues tagged the growing ("plus") ends of microtubules in human retinal epithelial cells with a fluorescent molecule, videotaped their growth and carefully followed the tracks back to their origin.

"We show that not only the centrosome, but the Golgi also makes microtubules," Kaverina said. "And unlike centrosomal microtubules, which are radial and symmetric, these microtubules are directional."

They found that microtubules originating at the Golgi are directed toward the cell "front," or the leading edge, of motile cells. Since such an orientation is needed for directional migration, Kaverina hypothesizes that this subset of microtubules may influence cell motility by facilitating the transport of proteins needed for movement to the cell front.

"This new microtubule subset that we discovered directly connects the Golgi to the cell front, so it would be very logical if these microtubules act as ‘tracks' for this delivery," she said.

In addition to identifying this novel site of microtubule nucleation, Kaverina and colleagues also examined the molecular mechanisms governing the process. They found that proteins normally associated with the plus ends of microtubules, called CLASPs, localize to a specific compartment of the Golgi (the Trans Golgi Network) and stabilize the microtubule "seeds" at the Golgi.

Golgi-originating microtubules could also be an important factor influencing how cancer cells invade distant tissues.

Because microtubules play a central role in cell division, cancer drugs like colchicine, vincristine and paclitaxel (Taxol) can block cell division by altering microtubule dynamics.

"Many classic chemotherapy strategies affect microtubules, although it's not quite clear how these drugs influence cancer cells differently than normal cells," said Kaverina. "Both microtubule regulation of proliferation and microtubule regulation of migration and invasion probably contribute to the therapeutic effects."

Therefore, further study of this new subset of microtubules might offer insight into how the invasion of cancer cells into surrounding tissues could be halted.


Source:Vanderbilt University Medical Center

Related biology news :

1. An HIV Protein Plays a Surprising Role in Gene Activation
2. Surprising findings reported about iron overload
3. Survey Uncovers Surprising Attitudes Towards HIV Vaccine Research
4. Surprising symbiosis: Glassy-winged sharpshooter eats with friends
5. UAB scientists discover the origin of a mysterious physical force
6. An (ecological) origin of species for tropical reef fish
7. Ancient DNA helps clarify the origins of two extinct New World horse species
8. The genetic origins of corn on the cob
9. Scientists discover stem cell origin of neck and shoulders
10. Ancient DNA confirms single origin of Malagasy primates
11. Lifes origins were easier than was thought

Post Your Comments:

(Date:10/29/2015)... Oct. 29, 2015  The J. Craig Venter Institute ... "DNA Synthesis and Biosecurity: Lessons Learned and Options for ... Health and Human Services guidance for synthetic biology providers ... --> --> Synthetic ... the potential to pose unique biosecurity threats. It now ...
(Date:10/29/2015)... health pioneer, Joseph C. Kvedar , MD, describes ... wellness, and the business opportunities that arise from it ... Healthy Things . Long before health and wellness ... vice president, Connected Health, Partners HealthCare, was creating a ... the hospital or doctor,s office into the day-to-day lives ...
(Date:10/27/2015)... -- In the present market scenario, security is one ... verticals such as banking, healthcare, defense, electronic gadgets, and ... secure & simplified access control and growing rate of ... bank accounts, misuse of users, , and so on. ... and smartphones are expected to provide potential opportunities for ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... its business and prospects remain fundamentally strong and ... (zoptarelin doxorubicin) recently received DSMB recommendation to continue ... following review of the final interim efficacy and ... Primary Endpoint in men with heavily pretreated castration- ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and Zachary Apte, ... their initial angel funding process. Now, they are paying it forward to other ... stage investments in the microbiome space. In this, they join other successful ...
(Date:11/24/2015)... SAN DIEGO , Nov. 24, 2015 Halozyme Therapeutics, ... Jaffray Healthcare Conference in New York on ... Dr. Helen Torley , president and CEO, will provide a ... New York at 1:00 p.m. ET/10:00 a.m. ... communication and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... behalf of the Toronto Stock Exchange, confirms that as ... no corporate developments that would cause the recent movements ... --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical company ...
Breaking Biology Technology: