Navigation Links
Superconducting magnet attracts molecular research

One of the newest - and unequivocally the coolest - pieces of real estate on the Brandeis University campus is a facility containing a state-of-the-art superconducting magnet for use in researching biological macromolecules such as DNA, RNA, enzymes and other proteins.

The installation of the gleaming 800 MHz German-made Bruker magnet was recently completed in a specially built facility on campus. Weighing in at roughly seven and a half tons, the magnetic resonance (MR) spectrometer was funded by a $2 million grant from the National Institutes of Health (NIH) in a stiff competition among research universities. Since 2001, the NIH has funded only three such magnets nationwide, said professor of chemistry Tom Pochapsky, who spearheaded a group effort to bring the magnet to Brandeis.

"It's a testament to Brandeis' strength in this area that the magnet is located on our campus and under our stewardship," noted Pochapsky.

Brought in by crane and located at a site protected from large metal objects and radio frequency interference, the superconducting behemoth was actually energized with about the same amount of power consumed by a big stereo, Pochapsky explained.

First, the superconducting electric coils that create the magnetic field were bathed in liquid helium to drop the temperature to 2 degrees Kelvin or minus 456 degrees Fahrenheit. Once the coils were supercooled, electric current was able to pass through them without resistance, creating the magnetic field. Once at field, the magnet uses no power at all, although the large liquid helium tank surrounding the coil needs to be refilled every six weeks or so.

Once the magnet has been fully tested, Brandeis researchers, as well as other Boston-area universities engaged in NIH-funded biomedical research, will use it around the clock. Experiments usually run in weeklong blocks, though some may run for several weeks at a time, according to Pochapsky.

Magnetic resonanc e is a physical phenomenon based on the magnetic property of an atom's nucleus. It occurs when the nuclei of certain atoms are immersed in a static magnetic field and then exposed to a second oscillating field, causing them to essentially line up and act in unison, like a battalion of marching soldiers, said Pochapsky.

The electrons, neutrons and protons within the atom have an intrinsic property known as "spin" and within the electromagnetic field created by the magnet, the frequency of the spinning motion of the atoms reveals information about the physical, chemical, structural and electronic characteristics of the molecule in solution.

Magnetic resonance spectroscopy was first described more than a half century ago, and is related to MRI (magnetic resonance imaging) used in hospitals as a soft-tissue diagnostic tool. It is used in chemical and biochemical research because it is the most sophisticated analytical tool available for determining the three-dimensional structure and motion of biological molecules in solution. The average hospital-based MRI has an electromagnetic field of about 7 Tesla, while this superconducting magnet is more than twice as powerful, measuring a magnetic field of 18.8 Tesla, said Pochapsky.

"Brandeis has done pioneering work in structural biology for decades, and this magnet helps keep us at the cutting edge of research," said Pochapsky. "It's an investment in the future."


'"/>

Source:Brandeis University


Related biology news :

1. Overbearing colored light may reveal a second mechanism by which birds interpret magnetic signals
2. Bacteria which sense the Earths magnetic field
3. Researchers reveal mystery of bacterial magnetism
4. Study to explore using magnets to correct sunken chest
5. Using nanomagnets to enhance medical imaging
6. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
7. Source of molecular triggers in cutaneous T cell lymphoma identified
8. Plants, animals share molecular growth mechanisms
9. NYU researchers simulate molecular biological clock
10. Scientists reveal molecular secrets of the malaria parasite
11. Scientists identify molecular events that drive cell senescence
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the "Company"), ... Report on Form 10-K on Thursday April 13, 2017 with the ... The ... section of the Company,s website at http://www.nxt-id.com  under "SEC Filings," ... 2016 Year Highlights: Acquisition of ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... set to take place on 7th and 8th June 2018 in San Francisco, CA. ... policy influencers as well as several distinguished CEOs, board directors and government officials from ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
Breaking Biology Technology: