Navigation Links
Super-sized cassava plants may help fight hunger in Africa

In a recent study, genetically modified cassava plants produced roots that were more than two-and-a-half times the size of normal cassava roots.

The findings could help ease hunger in many countries where people rely heavily on the cassava plant (Manihot esculenta) as a primary food source, said Richard Sayre, the study's lead author and a professor of plant cellular and molecular biology at Ohio State University.

The researchers used a gene from the bacterium E. coli to genetically modify cassava plants. The plants, which were grown in a greenhouse, produced roots that were an average of 2.6 times larger than those produced by regular cassava plants.

"Not only did these plants produce larger roots, but the whole plant was bigger and had more leaves," Sayre said. Both the roots and leaves of the cassava plant are edible.

Cassava is the primary food source for more than 250 million Africans ?about 40 percent of the continent's population. And the plant's starchy tuberous root is a substantial portion of the diet of nearly 600 million people worldwide.

Sayre said he hopes to offer these plants to countries where cassava is an important crop.

The current study appears in the online early issue of the Plant Biotechnology Journal. Sayre collaborated with Ohio State colleague Uzoma Ihemere and scientists from BASF Plant Science in Research Triangle Park, N.C., and BARC-West in Beltsville, Md., who formerly worked on this project in his laboratory.

Sayre said that cassava produces sugar more efficiently than any other cultivated plant.

"We wanted to find a way to help the plant redirect that excess sugar and use it to make starch," Sayre said.

The researchers used a variety of cassava native to Colombia (cassava was brought to Africa from South America by the Portuguese in the 1500s.) They inserted into three cassava plants an E. coli gene that controls starch production. A non-modified fourth plant ser ved as a control.

"Cassava actually has this same gene," Sayre said. "But the bacterial version of the gene is about a hundred times more active."

The modified plants converted more of their sugar into starch, as shown by an increase in root size as well as the number of roots and leaves produced by each modified plant.

The roots of the modified plants were up to 2.6 fold larger than the roots of a non-modified plant (an average of 198 grams for the biggest roots vs. 74 grams for the roots of the non-modified plant.) The modified plants produced a maximum of 12 roots, compared to the seven roots produced by the non-modified plant. These modified plants also produced a third more leaves ?a maximum of 123 leaves per modified plant vs. 92 leaves per non-modified plant.

Sayre said that the bigger roots produced by the plants were just that ?bigger. They weren't necessarily more nutritious. And they would still need to be processed quickly and properly after harvesting, as the roots and leaves of poorly processed cassava plants contain a substance that triggers the production of cyanide.

In previous work, Sayre helped create cassava that produced little to no cyanide once it is harvested.

He is also the principal investigator of an ongoing project focused on improving the nutritional content of cassava. In this work Sayre leads a team of national and international scientists focused on increasing the vitamin, mineral and protein content of the plant.


'"/>

Source:Ohio State University


Related biology news :

1. Research team receives $7.5 million to study cassava
2. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
3. Antibodies from plants protect against anthrax
4. New RNA polymerase discovered in plants
5. Transgenic plants remove more selenium from polluted soil than wild plants, new tests show
6. Scientists discover how plants disarm the toxic effects of excessive sunlight
7. Defenseless plants arm themselves with metals
8. At long last, scientists figure out how plants grow
9. Precise Timing Enabled Pig-to-rat Transplants To Cure Diabetes
10. Engineers improve plastics potential for use in implants by linking it to biological material
11. Innovative coating could give medical implants a longer life
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/12/2017)...  Trovagene, Inc. (NASDAQ: TROV ), a ... that it has signed agreements with seven strategic partners ... Middle East for commercialization of the ... wave of international distribution agreements for Trovagene,s CLIA based ... The initial partners will introduce Trovagene,s liquid biopsy ...
(Date:1/11/2017)... 2017 Intoxalock, a leading ignition interlock provider, ... its patent-pending calibration device. With this new technology, Intoxalock ... upload data logs and process repairs at service center ... "Fighting drunk driving through the application of cutting-edge technologies ... but also for the customer who can get back ...
(Date:1/6/2017)... Colo. , Jan. 5, 2017  SomaLogic ... the "Digital Life Alliance" established by iCarbonX, the ... 2015 to build a "Global Digital Health Ecosystem ... on a combination of individual,s biological, behavioral and ... the agreement between the companies, SomaLogic will provide ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... 20, 2017 Stock-Callers.com explores the ... influenced the most recent performances of select equities. In ... RGLS ), Abeona Therapeutics Inc. (NASDAQ: ... ), and Sage Therapeutics Inc. (NASDAQ: SAGE ... View Research, global Biotech market size is expected to reach $604.40 billion by ...
(Date:1/20/2017)... NEW YORK , January 20, 2017 ... Health Organization, cancer is one of leading causes of ... in 2012. Although the number of cancer related deaths ... since 1990. Rising in incidence rate of various cancers ... According to a research report by Global Market Insights, ...
(Date:1/19/2017)... Research and Markets has announced the addition ... Type, Application - Global Opportunity Analysis and Industry Forecast, 2014-2022" ... ... is projected to reach $15,737 million by 2022 from $6,521 in ... Omic technologies segment accounted for more than half ...
(Date:1/19/2017)... and HOUSTON , Jan. 19, ... today announced the formation of its Medical/Clinical Advisory ... and industry veterans who enhance the range and ... accelerates development of its novel prenatal diagnostic tests.  ... clinical and strategic guidance for the company,s product ...
Breaking Biology Technology: