Navigation Links
Super-fermenting fungus genome sequenced

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization of the genetic blueprint of the fungus Pichia stipitis, by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and collaborators at the U.S. Forest Service, Forest Products Laboratory (FPL). The research, entailing the identification of numerous genes in P. stipitis responsible for its fermenting and cellulose-bioconverting prowess, and an analysis of these metabolic pathways, is featured in the March 4 advanced online publication of Nature Biotechnology.

P. stipitis is the most proficient microbial fermenter in nature of the five-carbon “wood sugar?xylose—abundant in hardwoods and agricultural leftovers, which represent a motherlode of bioenergy fodder.

“Increasing the capacity of P. stipitis to ferment xylose and using this knowledge for improving xylose metabolism in other microbes, such as Saccharomyces cerevisiae, brewer’s yeast, offers a strategy for improved production of cellulosic ethanol,?said Eddy Rubin, DOE JGI Director. “In addition, this strategy could enhance the productivity and sustainability of agriculture and forestry by providing new outlets for agricultural and wood harvest residues.?

Ligonocellulosic biomass, a complex of cellulose, hemicellulose, and lignin, is derived from such plant-based “feedstocks?as agricultural waste, paper and pulp, wood chips, grasses, or trees such as poplar, recently sequenced by DOE JGI. Under current strategies for generating lignocellulosic ethanol, these forms of biomass require expensive and energy-intensive pretreatment with chemicals and/or heat to loosen up this complex. Enzymes are then employed to break down complex carbohydrate into sugars, such as glucose and xylose, which can then be fermented to produce ethanol. Additional energy is requi red for the distillation process to achieve a fuel-grade product. Now, the power of genomics is being directed to optimize this age-old process.

“The information embedded in the genome sequence of Pichia has helped us identify several gene targets to improve xylose metabolism,?said Pichia paper lead author Thomas W. Jeffries of the Forest Products Laboratory in Madison, Wisconsin. “We are now engineering these genes to increase ethanol production.?Jeffries said that yeast strains like Pichia have evolved to cope with the oxygen-limited environment rich in partially digested wood that is encountered in the gut of insects, from where the sequenced strain was originally isolated.

FPL has a Cooperative Research and Development Agreement (CRADA) in place with a New York City-based bioenergy company, Xethanol Corporation, which plans to integrate Dr. Jeffries?findings into its large-scale biofuels production processes.

Pichia joins white rot fungus in the growing portfolio of bioenergy-relevant fungus genomes sequenced by DOE JGI through its user programs and contributed freely to the worldwide scientific community.
'"/>

Source:DOE/Joint Genome Institute


Related biology news :

1. Scientists decipher genome of fungus that can cause life-threatening infections
2. Experiment station researchers to explore genome of disease-fighting fungus
3. Secret sex life of killer fungus?
4. Purdue researchers find key to rice blast fungus
5. Scientists develop fungus-fighting vaccine
6. Breaking the mold: Research teams sequence three fungus genomes
7. Invasive species harms native hardwoods by killing soil fungus
8. New lab technique churns out fungus potential cancer fighter
9. New lab technique churns out fungus potential cancer fighter
10. DOE JGI sequences, releases genome of symbiotic tree fungus
11. Prehistoric mystery organism verified as giant fungus

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... YORK , Dec. 16, 2016 The global wearable ... USD 12.14 billion by 2021 from USD 5.31 billion in 2016, ... ... is mainly driven by technological advancements in medical devices, launch of ... rising preference for wireless connectivity among healthcare providers, and increasing focus ...
(Date:12/15/2016)... HILLS, Mich. , Dec. 15, 2016  There ... unlocking car doors or starting the engine. Continental will ... in Las Vegas . Through the ... (Passive Start and Entry) and biometric elements, the international ... field of vehicle personalization and authentication. "The ...
(Date:12/7/2016)... December 7, 2016 According to a new market research ... Tool (Facial Expression, Voice Recognition), Service, Application Area, End User, And Region - ... grow from USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, ... Continue Reading ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... Research and Markets has announced the addition of the "Cancer ... Opportunity Analysis and Industry Forecast, 2014-2022" report to their offering. ... Cancer Biomarkers ... $15,737 million by 2022 from $6,521 in 2015, growing at a ... technologies segment accounted for more than half of the revenue share ...
(Date:1/19/2017)... 2017 /PRNewswire -- WuXi AppTec, a leading global ... technology platform, today announced that it has acquired ... drug discovery contract research organization (CRO). After completion ... subsidiary of WuXi, and will continue to focus ... services. The acquisition will further strengthen WuXi,s R&D ...
(Date:1/19/2017)... Berkeley, CA (PRWEB) , ... January 19, 2017 ... ... the delivery of product vigilance software to leading biopharmaceutical and medical device manufacturers ... Mail is a fully 21 CFR Part 11-compliant email client designed to provide ...
(Date:1/19/2017)... AquaBounty Technologies, Inc. (AIM: ABTU; NASDAQ: AQB), ... and a majority-owned subsidiary of Intrexon Corporation (NYSE: ... listing of its common shares on the NASDAQ Stock ... "AquaBounty,s listing on NASDAQ represents an important milestone ... the U.S. markets as we advance plans for commercial ...
Breaking Biology Technology: