Navigation Links
Super-fermenting fungus genome sequenced

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization of the genetic blueprint of the fungus Pichia stipitis, by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and collaborators at the U.S. Forest Service, Forest Products Laboratory (FPL). The research, entailing the identification of numerous genes in P. stipitis responsible for its fermenting and cellulose-bioconverting prowess, and an analysis of these metabolic pathways, is featured in the March 4 advanced online publication of Nature Biotechnology.

P. stipitis is the most proficient microbial fermenter in nature of the five-carbon “wood sugar?xylose—abundant in hardwoods and agricultural leftovers, which represent a motherlode of bioenergy fodder.

“Increasing the capacity of P. stipitis to ferment xylose and using this knowledge for improving xylose metabolism in other microbes, such as Saccharomyces cerevisiae, brewer’s yeast, offers a strategy for improved production of cellulosic ethanol,?said Eddy Rubin, DOE JGI Director. “In addition, this strategy could enhance the productivity and sustainability of agriculture and forestry by providing new outlets for agricultural and wood harvest residues.?

Ligonocellulosic biomass, a complex of cellulose, hemicellulose, and lignin, is derived from such plant-based “feedstocks?as agricultural waste, paper and pulp, wood chips, grasses, or trees such as poplar, recently sequenced by DOE JGI. Under current strategies for generating lignocellulosic ethanol, these forms of biomass require expensive and energy-intensive pretreatment with chemicals and/or heat to loosen up this complex. Enzymes are then employed to break down complex carbohydrate into sugars, such as glucose and xylose, which can then be fermented to produce ethanol. Additional energy is requi red for the distillation process to achieve a fuel-grade product. Now, the power of genomics is being directed to optimize this age-old process.

“The information embedded in the genome sequence of Pichia has helped us identify several gene targets to improve xylose metabolism,?said Pichia paper lead author Thomas W. Jeffries of the Forest Products Laboratory in Madison, Wisconsin. “We are now engineering these genes to increase ethanol production.?Jeffries said that yeast strains like Pichia have evolved to cope with the oxygen-limited environment rich in partially digested wood that is encountered in the gut of insects, from where the sequenced strain was originally isolated.

FPL has a Cooperative Research and Development Agreement (CRADA) in place with a New York City-based bioenergy company, Xethanol Corporation, which plans to integrate Dr. Jeffries?findings into its large-scale biofuels production processes.

Pichia joins white rot fungus in the growing portfolio of bioenergy-relevant fungus genomes sequenced by DOE JGI through its user programs and contributed freely to the worldwide scientific community.

Source:DOE/Joint Genome Institute

Related biology news :

1. Scientists decipher genome of fungus that can cause life-threatening infections
2. Experiment station researchers to explore genome of disease-fighting fungus
3. Secret sex life of killer fungus?
4. Purdue researchers find key to rice blast fungus
5. Scientists develop fungus-fighting vaccine
6. Breaking the mold: Research teams sequence three fungus genomes
7. Invasive species harms native hardwoods by killing soil fungus
8. New lab technique churns out fungus potential cancer fighter
9. New lab technique churns out fungus potential cancer fighter
10. DOE JGI sequences, releases genome of symbiotic tree fungus
11. Prehistoric mystery organism verified as giant fungus

Post Your Comments:

(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
Breaking Biology News(10 mins):
(Date:11/24/2015)...  PDL BioPharma, Inc. (PDL) (NASDAQ: PDLI ) today ... and chief executive officer, will present at the 27 th ... New York City . The presentation will be ... at 9:30 a.m. EST. and go ... least 15 minutes prior to the presentation to allow for ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... Whitehouse Laboratories ... Laboratory. The new stand-alone facility will be strictly dedicated to basic USP 61, ... and existing clients the chance to have complete chemistry and micro testing performed by ...
(Date:11/23/2015)... with a certain type of lung nodule visible on lung ... cancer than men with similar nodules, according to a new ... the Radiological Society of North America ... Lung nodules are small masses of tissue in the lungs ... appearance on CT. Solid nodules are dense, and they obscure ...
(Date:11/23/2015)... Nov. 23, 2015 China Cord Blood Corporation ... leading provider of cord blood collection, laboratory testing, hematopoietic ... announced its preliminary unaudited financial results for the second ... September 30, 2015. --> ... , Revenues for the second quarter of fiscal 2016 ...
Breaking Biology Technology: