Navigation Links
Super-fermenting fungus genome sequenced

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization of the genetic blueprint of the fungus Pichia stipitis, by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and collaborators at the U.S. Forest Service, Forest Products Laboratory (FPL). The research, entailing the identification of numerous genes in P. stipitis responsible for its fermenting and cellulose-bioconverting prowess, and an analysis of these metabolic pathways, is featured in the March 4 advanced online publication of Nature Biotechnology.

P. stipitis is the most proficient microbial fermenter in nature of the five-carbon “wood sugar?xylose—abundant in hardwoods and agricultural leftovers, which represent a motherlode of bioenergy fodder.

“Increasing the capacity of P. stipitis to ferment xylose and using this knowledge for improving xylose metabolism in other microbes, such as Saccharomyces cerevisiae, brewer’s yeast, offers a strategy for improved production of cellulosic ethanol,?said Eddy Rubin, DOE JGI Director. “In addition, this strategy could enhance the productivity and sustainability of agriculture and forestry by providing new outlets for agricultural and wood harvest residues.?

Ligonocellulosic biomass, a complex of cellulose, hemicellulose, and lignin, is derived from such plant-based “feedstocks?as agricultural waste, paper and pulp, wood chips, grasses, or trees such as poplar, recently sequenced by DOE JGI. Under current strategies for generating lignocellulosic ethanol, these forms of biomass require expensive and energy-intensive pretreatment with chemicals and/or heat to loosen up this complex. Enzymes are then employed to break down complex carbohydrate into sugars, such as glucose and xylose, which can then be fermented to produce ethanol. Additional energy is requi red for the distillation process to achieve a fuel-grade product. Now, the power of genomics is being directed to optimize this age-old process.

“The information embedded in the genome sequence of Pichia has helped us identify several gene targets to improve xylose metabolism,?said Pichia paper lead author Thomas W. Jeffries of the Forest Products Laboratory in Madison, Wisconsin. “We are now engineering these genes to increase ethanol production.?Jeffries said that yeast strains like Pichia have evolved to cope with the oxygen-limited environment rich in partially digested wood that is encountered in the gut of insects, from where the sequenced strain was originally isolated.

FPL has a Cooperative Research and Development Agreement (CRADA) in place with a New York City-based bioenergy company, Xethanol Corporation, which plans to integrate Dr. Jeffries?findings into its large-scale biofuels production processes.

Pichia joins white rot fungus in the growing portfolio of bioenergy-relevant fungus genomes sequenced by DOE JGI through its user programs and contributed freely to the worldwide scientific community.
'"/>

Source:DOE/Joint Genome Institute


Related biology news :

1. Scientists decipher genome of fungus that can cause life-threatening infections
2. Experiment station researchers to explore genome of disease-fighting fungus
3. Secret sex life of killer fungus?
4. Purdue researchers find key to rice blast fungus
5. Scientists develop fungus-fighting vaccine
6. Breaking the mold: Research teams sequence three fungus genomes
7. Invasive species harms native hardwoods by killing soil fungus
8. New lab technique churns out fungus potential cancer fighter
9. New lab technique churns out fungus potential cancer fighter
10. DOE JGI sequences, releases genome of symbiotic tree fungus
11. Prehistoric mystery organism verified as giant fungus

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/23/2017)... , Aug. 23, 2017  The general public,s help is being ... microbiome—the bacteria that live in and on the human body –and are ... The Microbiome ... the human microbiome, starting with the gut. The project's goal is to ... Photo credit: IBM ...
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/16/2017)... 2017   Bridge Patient Portal , an ... MD EMR Systems , an electronic medical record ... have established a partnership to build an interface ... GE Centricity™ products, including Centricity Practice Solution (CPS), ... These new integrations will allow healthcare delivery networks ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series will ... American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates ... of how to continue to feed a growing nation. At the same time, many ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... providing advanced instruments and applications consulting for microscopy and surface analysis, Nanoscience ... application consulting, Nanoscience Analytical offers a broad range of contract analysis services ...
(Date:10/6/2017)... ... October 06, 2017 , ... On Tuesday, ... webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The featured ... event is free and open to the public, but registration is required. , ...
Breaking Biology Technology: