Navigation Links
Sunflower speciation highlights roles for transposable elements in evolution

In a finding that furthers our understanding of how hybridization may contribute to genome changes and the evolution of new species, researchers have found that the genomes of three sunflower species that arose in evolution as hybrids of the same two parental types have undergone a massive proliferation of genetic entities known as transposable elements. The findings are reported by Mark Ungerer and colleagues at Kansas State University and appear in the October 24th issue of the journal Current Biology, published by Cell Press.

Theory predicts that for diploid species--that is, those possessing two sets of chromosomes, like most animals and plants--the origin of new species through inter-species hybridization may be facilitated by rapid reorganization of genomes. Previous work on three independently derived hybrid sunflower species has validated this mode of speciation by documenting novel structural rearrangements in their chromosomes, as well as large-scale increases in nuclear DNA content. The nuclear-genome size differences between the hybrids and their parental taxa occur in spite of the fact that all species possess the same number of chromosomes and are diploids.

In the new work, the researchers have determined that the genome size differences between the hybrid and parental sunflower species are associated with a massive proliferation of transposable genetic elements that has occurred independently in the genome of each hybrid species. Transposable elements, made famous by Barbara McClintock in her study of their behavior in maize, are related to infectious retroviruses and are capable of multiplying and inserting themselves at different points throughout a host genome. They are found in virtually all eukaryotic genomes.

The new findings not only add an interesting twist to the origin of new sunflower species through hybridization, but also suggest that the sunflower system may emerge as an excellent model group for studying th e natural forces influencing the activation and proliferation of transposable elements in plants. This is because in addition to their hybrid origins, each of the three hybrid species is adapted to, and evolved in, a so-called abiotically extreme environment--two of the species are found in desert environments, while the third is adapted to salt marshes. Both hybridization and abiotic stress have been implicated as natural agents of activation and proliferation of transposable elements.
'"/>

Source:Cell Press


Related biology news :

1. New book highlights worlds borderless conservation areas
2. Learning to love bacteria: Stanford scientist highlights bugs benefits
3. Bird flu study highlights need to vaccinate flocks effectively
4. Research highlights how bacteria produce energy
5. Report highlights change in Canadas forests
6. Study highlights new and cheaper way to treat heroin addiction
7. Conserved amino acids play both structural and mechanistic roles in sandwich-like protein
8. Flies on speed offer insight into the roles of dopamine in sleep and arousal
9. Bedsores and bald hides: Novel roles revealed for a scaffolding protein
10. New roles for growth factors: Enticing nerve cells to muscles
11. Master planners in brain may coordinate other areas roles in cognitive tasks

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/7/2017)... , February 7, 2017 ... Global Solutions Corporation [OTC: IDGS], ("Ipsidy" or the "Company") ... electronic transaction processing services, is pleased to announce the ... Company. Effective January 31, 2017, Philip ... of Directors, CEO and President.  An experienced payment industry ...
(Date:2/3/2017)...  Texas Biomedical Research Institute announced that its Board of ... as the Institute,s new President and CEO. Dr. Schlesinger will ... He is currently the Chair of the Department of Microbial ... Interface Biology at Ohio State University. "We are ... CEO of Texas Biomed," said Dr. James O. Rubin ...
(Date:2/2/2017)... Feb. 2, 2017   TapImmune, Inc. ... company specializing in the development of innovative peptide ... of cancer and metastatic disease, announced today it ... manufacturing of a second clinical lot of TPIV ... receptor alpha. The manufactured vaccine product will be ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... JOSE, Calif. , Feb. 23, 2017 /PRNewswire/ ... exclusive license for two key immunotherapy technologies from ... first technology provides a method to monitor a ... such as PD-L1 and CTLA-4.  The second license ... if a patient is likely to have an ...
(Date:2/23/2017)... San Antonio, TX (PRWEB) , ... February 23, ... ... and Drug Administration (FDA) de novo clearance to begin marketing the SPEAC® System, ... is indicated for adults at home or in healthcare facilities during periods of ...
(Date:2/23/2017)... ... ... The Greater Gift Initiative, Inc , (GGI) a Winston-Salem, NC 501(c)3 non-profit, ... is to advance global health and highlight the greater good of clinical trial participation ... trial volunteer. The vision of GGI is to serve as a philanthropic connector between ...
(Date:2/23/2017)... ... February 22, 2017 , ... Seventy-one ... been named Fellows of the Society this year, the Fellows Committee has announced. ... fields of optics, photonics, and imaging as well as their service to the ...
Breaking Biology Technology: