Navigation Links
Study uncovers bacteria's worst enemy

University of California scientists working at Los Alamos National Laboratory have found that the successful use of bacteria to remediate environmental contamination from nuclear waste and processing activities may depend more upon how resistant the bacteria are to chemicals than to how tolerant they are to radioactivity. The results of a recent Laboratory study may help make bacterial bioremediation a more widespread method for cleaning up sites contaminated with actinides and other radionuclides.

In research published in the journal Environmental Microbiology, Laboratory chemist Mary Neu and her colleagues describe their study of different naturally occurring bacteria used to treat actinide contamination. Actinides are the elements above atomic number 89 and are usually radioactive. The study's results indicate that actinide toxicity is primarily chemical, rather than radiological, and so a bacteria's resistance to radiation does not necessarily ensure a tolerance for radionuclides. In fact, the bacteria's worst enemy in a nuclear waste site may not be the radioactive elements, but rather, the other toxic metals that might also be found at the site.

The study also shows that contrary to the conventional wisdom, when it comes to these environmental bacteria, plutonium is less toxic than uranium and, in general, actinides are less toxic than other types of metals. This suggests that actinide toxicity will not impede bioremediation using naturally occurring bacteria.

"This study" said Neu, "is exciting because even though we've known for years that bacterial bioremediation can be a preferred method for cleaning up actinide contamination, we've never really known whether or not radioactivity or chemical toxicity will stifle the process. Our study found that actinides are chemically toxic to bacteria only at high levels far, far above concentrations at contaminated sites, and that common toxic metals, such as cadmium, nickel, and chromium, are mo re likely to cause problems for the bacteria."

Generally, bacteria used for bioremediation are selected to target a specific form and oxidation state of toxic pollutants, such as soluble hexavalent uranium carbonate for uranium contamination. However, a single chemical rarely contaminates soils and groundwater and combinations of actinides, radionuclides, organic chemicals and metal regularly exist at many nuclear sites. Based on the results of this study, if bioremediation is to be effective at these types of sites, the operative microorganisms must be able to grow, function and do better than other bacteria in the presence of all kinds of contaminants.

The study examined the effects of toxicity of actinides, metals and chelators on different bacteria being evaluated for radionuclide bioremediation, Deinococcus radiodurans and Pseudomonas putida, along with the toxicity of plutonium on the bacteria Shewanella putrefaciens.

In addition to Neu, the bacteria bioremediation study team includes Christy Ruggiero and Hakim Boukhalfa of the Chemistry Division, and Joseph Lack and Larry Hersman from the Laboratory's Bioscience Division.


'"/>

Source:DOE/Los Alamos National Laboratory


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Emory Study Tests Bone Marrow Stem Cells to Improve Circulation in Legs
3. UCLA Study Shows One-Third of Drug Ads in Medical Journals Do Not Contain References Supporting Medical Claims
4. Study Demonstrates Gene Expression Microarrays are Comparable and Reproducible
5. Study Links Ebola Outbreaks To Animal Carcasses
6. Breakthrough Microarray-based Technology for the Study of Cancer
7. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
8. Study finds more than one-third of human genome regulated by RNA
9. Leukemia Drug Breakthrough Study In New England Journal Of Medicine
10. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
11. New Study from Affymetrix Laboratories Points to Changing View of How Genome Works
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
(Date:3/22/2017)... 2017 Vigilant Solutions , a vehicle ... agencies, announced today the appointment of retired FBI special ... safety business development. Mr. Sheridan brings more ... a focus on the aviation transportation sector, to his ... Mr. Sheridan served as the Aviation Liaison Agent Coordinator ...
(Date:3/9/2017)... Australia , March 9, 2017 4Dx ... prestigious World Lung Imaging Workshop at the University of ... was invited to deliver the latest data to world ... recognised event brings together leaders at the forefront of ... in lung imaging. "The quality of ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... SANTA BARBARA, CALIFORNIA (PRWEB) , ... April 20, 2017 , ... ... process optimization firm for the life sciences and healthcare industries, is pleased to announce ... of the new established USDM subsidiary “USDM Europe GmbH” based in Germany. , ...
(Date:4/20/2017)... CA (PRWEB) , ... April 20, 2017 , ... ... of clinical trials worldwide, announced today that they were named one of the ... which covers the latest developments in the pharmaceutical industry. , “We take pride in ...
(Date:4/19/2017)... ... 2017 , ... The Vibrating Orifice Aerosol Generator (VOAG) was ... droplets of known diameters for research applications such as for calibrating droplet measuring ... monodisperse droplets. , The VOAG requires forcing liquid out of an orifice ...
(Date:4/19/2017)... Waltham, MA (PRWEB) , ... April 19, 2017 ... ... of a $1.5M Series A-1 financing round. This event adds to several other ... establishment of its’ Executive and Scientific Teams. , ThermaGenix will use ...
Breaking Biology Technology: