Navigation Links
Studies find general mechanism of cellular aging

Three separate studies confirm a gene that suppresses tumor cell growth also plays a key role in aging. The researchers found increasing concentration, or expression, of the gene p16INK4a in older cells; these aging cells worked poorly compared to young cells and remembered their "age" even when transferred from old mice to young mice. The cells of mice bred without the gene showed less sluggishness as the animals aged and continued to function in a manner more similar to cells from younger mice.

Teams from the medical schools at the University of North Carolina at Chapel Hill, University of Michigan and Harvard University observed similar results in pancreatic islet cells and brain and blood stem cells.

The results show disparate cell types share a common aging mechanism and suggest that aging-related diseases such as diabetes result from a failure of cell growth, said Dr. Norman E. Sharpless, co-author on the three studies and an assistant professor of medicine and genetics at the UNC School of Medicine. "The studies indicate that certain stem cells lose their ability to divide and replace themselves with age as the expression of p16INK4a increases," said Sharpless, a member of the UNC Lineberger Comprehensive Cancer Center.

The trio of reports are published online Sept. 6 in the journal Nature. The three research teams are from the medical schools at UNC, the University of Michigan and Harvard University.

The UNC study focused on p16INK4a effects on the function of pancreatic islet cells. Islet cells are responsible for insulin production and secretion. Because p16INK4a stops cancer cells from dividing and demonstrates increased expression with age, the scientists suspected the gene played a similar role in aging. The researchers developed strains of mice that were either deficient in p16INK4a (the gene was deleted, or 'knocked out") or genetically altered to have an excess of the protein to a degree seen in aging.

Accor ding to Sharpless, islet proliferation persisted in p16INK4a -deficient animals as they aged, "almost as if they were younger animals." In mice with an excess of p16INK4a, "islet cells aged prematurely; they stopped dividing early."

"This suggests that if we could attenuate p16INK4a expression in some way in humans, it could lead to enhanced islet re-growth in adults and a possible new treatment for diabetes," Sharpless said.

Similar results were found in the other studies, which focused on brain stem cells and blood stem cells.

The Michigan researchers, led by Dr. Sean Morrison, examined the role played by p16INK4a in neural stem cells, progenitor cells that can form new neurons and other brain cells. The team showed that p16INK4a increases markedly in those cells with aging. Moreover, p16INK4a -deficient neural stem cells work better and don't age to the same extent that wild-type (normal) stem cells do, Sharpless said.

Dr. Janakiraman Krishnamurthy, lead author of the UNC study and a postdoctoral scientist in the Sharpless lab, was a co-author of the Michigan report.The Harvard team, led by Dr. David Scadden, studied the role of p16INK4a in hematopoietic stem cells, which proliferate continuously during the adult lifespan and produce massive amounts of new blood cells on an hourly basis. Their results suggest that p16INK4a is the molecular basis for an old-age "signal" previously observed in blood stem cells. The Harvard study also showed that blood stem cells from old mice lacking p16INK4a functioned better than old cells from wild-type mice, suggesting p16INK4a causes aging of these cells as well.

Sharpless cautions that any promise of a potential new aging treatment based on p16INK4a should include two important caveats. "First, even though old mice lacking p16INK4a show enhanced stem cell function, they do not live longer. This is because p16INK4a is an important cancer-suppressor gene, and mice lacking p16INK4a dev elop more cancers than old, normal mice," he said.

"Secondly, in all three studies, p16INK4a loss was associated with an improvement in some but not all of the consequences of aging. There are clearly things in addition to p16INK4a that contribute to aging. We don't yet know what they are."

However, the gene may prove immediately useful as a biomarker for studies of aging, Sharpless said. "If you were going to calorically restrict yourself or take green tea or resveratrol every day for years in an effort to prevent aging, wouldn't you like some evidence that these not entirely benign things were having a beneficial effect? Now we have a biomarker that can directly test the effects of such things," he said.
'"/>

Source:University of North Carolina School of Medicine


Related biology news :

1. Studies reveal methods viruses use to sidestep immune system
2. Studies reveal how plague disables immune system, and how to exploit the process to make a vaccine
3. Studies clarify risk factors for mother-to-child transmission of hepatitis C virus
4. Studies on human genome variation provide insight into disease
5. Studies suggest new brain protein may help in treating schizophrenia, insomnia and anxiety
6. Studies look at how genes affect antipsychotic drug response
7. Studies yield insight into the numerical brain
8. Studies force new view on biology of flavonoids
9. Stroke symptoms common among general population
10. A new mechanism of regulating RNA degradation
11. Plants, animals share molecular growth mechanisms

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/29/2016)... CANNES, France , November 29, 2016 Nearly ... Continue Reading ... ... System is part of an efficient Identity Management. (PRNewsFoto/DERMALOG Identification Systems) ... DERMALOG is Germany's largest Multi-Biometric ...
(Date:11/21/2016)...   Neurotechnology , a provider of high-precision ... that the MegaMatcher On Card fingerprint matching algorithm ... NIST Minutiae Interoperability Exchange (MINEX) III ... of the evaluation protocol. The ... fingerprint templates used to establish compliance of template ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, ... developing therapeutics focused on the gut microbiome, today ... of 25,000,000 shares of its common stock and ... stock at a price to the public of ... to Synthetic Biologics from the offering, excluding the ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced ... I/II clinical trials for AC0010 at the World Conference on Lung Cancer 2016, taking ... update on the phase I/II clinical trials for AC0010 in patients with advanced non-small ...
(Date:12/2/2016)... ... December 01, 2016 , ... The Conference Forum has announced ... days and will take place on February 1-3, 2017 at the Roosevelt Hotel in ... (NCI), the program provides a unique 360-degree approach, which addresses the most up-to-date information ...
(Date:12/2/2016)... ... 2016 , ... Robots will storm the Prudential Center in Boston, MA during ... which is held on the United Nations International Day of Persons with Disabilities, will ... workplace. Suitable Technologies is partnering with NTI to showcase how technology can help individuals ...
(Date:11/30/2016)... ... November 30, 2016 , ... BEI Kimco, a brand of ... flexure design that ensures high alignment accuracy by preventing unwanted shaft rotation. The ... where extreme precision is required, such as in medical equipment, laboratory instrumentation, clean ...
Breaking Biology Technology: