Navigation Links
Structures of marine toxins provide insight into their effectiveness as cancer drugs

Vibrantly colored creatures from the depths of the South Pacific Ocean harbor toxins that potentially can act as powerful anti-cancer drugs, according to research findings from University of Wisconsin-Madison biochemists and their Italian colleagues.

The research team has defined the structure of the toxins and provided a basic understanding that can be used to synthesize pharmaceuticals, according to a study published this week in the Proceedings of the National Academy of Sciences (PNAS).

"We've determined how this class of toxins interacts with actin," an important protein responsible for cellular structure and movement, says Ivan Rayment, a professor of biochemistry in the College of Agricultural and Life Sciences who worked with John Allingham, a postdoctoral fellow, on the study. "We're adding to fundamental understanding which will be taken up by others to simplify chemical synthesis of what could potentially be powerful cancer treatments."

The toxins, which are produced naturally by organisms that exist symbiotically on deep-sea sponges, work by disrupting the activity of actin, an abundant protein that gives structure to eukaryotic cells.

"Actin forms long chains, or filaments, that are essential for cellular locomotion, division and growth," explains Allingham. "Because cancer cell masses grow faster than other cells in the body, actin provides an excellent target for drugs that could inhibit such rapid growth."

Adds Allingham: "These marine toxins can knock out the lynchpins in these long chains or cap their ends and kill cancer cells. Moreover, initial work shows that even a low dose of these toxins can bring a significant response."

Prior to the study published in PNAS, it was known that the marine toxins affect several forms of cancer - but not how they worked, says Rayment. The recent findings will enable the toxins to be synthesized in a lab instead of harvested from the depths of the ocean floor, mea ning that the drugs can be engineered to be as effective as possible.

"In order to chemically synthesize a better drug, it is a good idea to know how the natural compound works," he says. "Scientists who study natural products take their cues from what nature has already done. We're adding deep biochemical meaning to this area."

He adds that synthetic chemists hope that actin-based drugs might one day rival the success of Taxol, a powerful drug derived from a natural product that keeps breast-cancer cells from dividing.

"Actin-based drugs have not yet been used as successful drugs as have those that target microtubules, like Taxol, in part because we haven't understood how to target actin," Rayment explains.


'"/>

Source:University of Wisconsin-Madison


Related biology news :

1. The Shapes Of Life: NIGMS Project Yields More Than 1,000 Protein Structures
2. Sequencing of marine bacterium will help study of cell communication
3. Solutions that reduce death of marine life reeled in by International Smart Gear Competition
4. UN environmental agency steps up battle against marine pollution
5. Evidence of 600-million-year old fungi-algae symbiosis discovered in marine fossils
6. Deep thinking: Scientists sequence a cold-loving marine microbe
7. UNC computer, marine scientists collaborate to predict flow of toxic waters from Katrina
8. UF study first to quantify validity of DNA I.D. tool using marine snails
9. Prenatal exposure to marine toxin causes lasting damage
10. Restaurant seafood prices since 1850s help plot marine harvests through history
11. Compound from marine bacteria shows potential as multiple myeloma therapy
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/2/2017)... 2, 2017 Summary This report ... Merck KGaA and its partnering interests and activities since ... Description The Partnering Deals and Alliance since 2010 ... of one of the world,s leading life sciences companies. ... purchase to ensure inclusion of the most up to ...
(Date:2/28/2017)... 2017 News solutions for biometrics, bag drop ... ... 14 to 16 March, Materna will present its complete end-to-end ... travel is a real benefit for passengers. To accelerate the ... passenger touch point solutions to take passengers through the complete ...
(Date:2/22/2017)... LONDON , Feb. 22, 2017 ... by 2021, ABI Research identifies four technologies that ... solutions to secure significant share in the changing ... payments, and passive authentication.   "Companies ... it comes to security," says Dimitrios Pavlakis ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... 27, 2017  Trovagene, Inc. (NASDAQ: TROV), a precision ... Officer, Bill Welch , will be presenting at ... 9:00 AM EDT at the Essex House in ... Chief Scientific Officer, Mark Erlander , Ph.D., will ... conference.   The presentation will be webcast live ...
(Date:3/27/2017)... 2017 Neurotrope, Inc. (OTCQB: NTRP),  a ... diseases, including Alzheimer,s disease, today announced that it ... the Company,s common stock on the NASDAQ Capital ... Market, a unit of the NASDAQ OMX Group. ... Opening Bell at the NASDAQ MarketSite in Times ...
(Date:3/24/2017)... and ROCKVILLE, Md. , ... company of Maxwell Biotech Venture Fund (MBVF), today announced ... SQ109 added to the standard drug therapy regimen in ... new small molecule drug discovered by scientists at Sequella, ... National Institutes of Health. A total ...
(Date:3/24/2017)... Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading provider of ... its board of directors has amended its shareholder rights plan. The amendment ... to March 27, 2018. The amendment was not in response to any ... ... is a China -based biopharmaceutical company that focuses ...
Breaking Biology Technology: