Navigation Links
Striking the right balance between excitation and inhibition

Neurons in the brain and spinal cord come in two flavors, excitatory neurons that transmit and amplify signals, and inhibitory neurons that inhibit and refine those signals. Although investigators have long appreciated that these two classes of neurons exist in the central nervous system, little is known about how cells decide to become inhibitory or excitatory during embryonic development. Researchers at the Salk Institute for Biological Studies have now uncovered a pathway that plays a central role in regulating this choice.

That path is described in a study from Martyn Goulding, PhD., an associate professor in the Molecular Neurobiology Laboratory. Goulding, along with co-lead authors, postdoctoral fellow Rumiko Mizuguchi, PhD., and Sonja Kriks, a graduate student at Georg-August University in Goettingen, Germany, analyzed the origins of a group of spinal cord "interneurons," neurons that bridge communications between other neurons.

Many interneurons emerging in the dorsal part of the spinal cord arise from a common progenitor cell. Since mature neurons can be either excitatory or inhibitory, the researchers asked how a single parental progenitor cell could produce both excitatory and inhibitory daughter cells, and how approximately equal numbers of each daughter cell are produced.

In a study published in the June edition of Nature Neuroscience (now available online), the team found that a receptor protein known as Notch, which was already known to regulate maturation of neurons from neural stem cells, has a reciprocal function in precursors of inhibitory and excitatory neurons: cells with high levels of activated Notch became excitatory neurons, while cells with low levels of Notch became inhibitory.

Interestingly, the researchers found that one way Notch combats an inhibitory fate is to turn off another a factor known as Ptf1a, which promotes that fate. Describing the role of Notch as an arbitrator of the choice between excitat ion and inhibition, Goulding says: "The degree of Notch expression on one neuron tells the sibling cell that it cannot be the same thing. If it is up-regulated in one cell, Notch will be down-regulated in its sibling. "There are thousands of different kinds of neurons in our incredibly complex nervous system, and we don't understand how this diversity comes about," Goulding explains.

Referring to the multiple roles of Notch, not only in controlling the differentiation of neurons but in determining their excitatory/inhibitory activity, he adds: "Given that we now have a detailed description of how Notch signaling provides a switch that controls the choice between two different neuronal fates, we can now look and see if it is used in similar ways elsewhere to make different kinds of neurons."

The neurons in the dorsal spinal cord analyzed by the Goulding lab form a relay station receiving and interpreting sensory signals from the environment and then sending them to the brain. In doing so these neurons evaluate the strength of sensations.

"An example of how the system works is illustrated by what happens when you cut your finger," Goulding explains. "Initially it hurts a lot, but the pain then eases. One of the reasons that this happens is because inhibitory interneurons in the dorsal spinal cord dampen down their excitatory counterparts, thus dialing down the pain."

Since interneurons play such critical roles in transmitting pain signals, it is thought that some chronic forms of pain are due to an imbalance in excitatory and inhibitory signals carried by interneurons. As such, the findings by the Goulding group are likely to be important for devising animal models to study these pain pathways.


'"/>

Source:Salk Institute


Related biology news :

1. Habitat use by North Pacific right whales, Eubalaena japonica, in the Bering Sea and Gulf of Alaska
2. Scientists discover that three overlapping signals in embryo help get the backbone right
3. FSU scientist warns North Atlantic right whale facing extinction
4. Purdues gold nanorods brighten future for medical imaging
5. The right drug at the right time
6. Einstein scientists discover how protein crucial for motion is synthesised at the right place in the cell
7. Wright bros. upstaged! Dinos invented biplanes
8. How does the brain know what the right hand is doing?
9. Forsyth scientists gain greater understanding of how embryos differentiate left from right
10. Brighter future for giant panda?
11. Finding the right mix: A biomaterial blend library
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/28/2016)... GOTHENBURG, Sweden , April 28, 2016 ... 1,491.2 M (139.9), up 966% compared with the first quarter of ... Operating profit totaled SEK 589.1 M (loss: 18.8) and the operating ... SEK 7.12 (loss: 0.32) Cash flow from operations was ... , The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced today that the two-level ... sale in the United States. These components expand the capabilities of the system ... sales beginning in October of 2015, the company has seen significant sales growth in ...
(Date:4/28/2016)... NEW YORK , April 28, 2016 /PRNewswire/ ... biotechnology acceleration company reports the Company,s CEO  was ... capital titled Accelerators Enter When VCs Fear To ... Life Science Leader magazine is an ... work for everything from emerging biotechs to Big ...
(Date:4/28/2016)... New York, NY (PRWEB) , ... April 28, ... ... plan, QuickSTAT has made significant investments in recruiting top industry experts, and expanding ... IT Platform, which provides industry-leading tools for clients to manage their clinical trial ...
(Date:4/27/2016)... (PRWEB) , ... April 27, 2016 , ... ... of cannabis testing technology at the Spring 2016 Marijuana Business Conference and Expo. ... pesticides, residual solvents, heavy metals, and more. Expo attendees can stop by booth ...
Breaking Biology Technology: