Navigation Links
Sticky surfaces turn slippery with the flip of a molecular light switch

Changing a surface from sticky to slippery could now be as easy as flipping a molecular light switch. Researchers at Rensselaer Polytechnic Institute have created an "optically switchable" material that alters its surface characteristics when exposed to ultraviolet (UV) light. The new material, which is described in the June 19 issue of the journal Angewandte Chemie International Edition, could have a wide variety of applications, from a protein filter for biological mixtures to a tiny valve on a "lab-on-a-chip."

Synthetic polymer membranes are used in a variety of applications based on the science of "bioseparation" -- filtering specific proteins from complex liquid mixtures of biological molecules. But proteins often stick to these membranes, clogging up their pores and severely limiting their performance, according to Georges Belfort, the Russell Sage Professor of Chemical Engineering at Rensselaer and corresponding author of the paper.

"We asked ourselves, can one use light to help the proteins hop on and hop off? We have shown that when one changes light, the proteins don't stick as well," Belfort says.

Operators need an inexpensive way to clean these membranes while they are still in place, rather than periodically removing them from the application environment, Belfort says. But currently the only cleaning options involve expensive chemicals or labor-intensive procedures that result in significant process down-time.

To make the new materials, Belfort and his coworkers attached spiropyran molecules to a widely used industrial polymer, poly(ether sulfone). Spiropyrans are a group of light-switchable organic molecules that exist in a colorless, "closed" form under visible light, but switch to a reddish-purple, "open" form when exposed to UV light. This change leads to an alteration of the new material's polarity, or the chemical structure of its atoms.

In switching from non-polar to polar, the material becomes less attracti ve to proteins that might stick to its surface, according to Belfort. Exposing the material to UV light is like flipping a molecular switch, causing sticky proteins to detach from the surface and wash away in the liquid, the researchers report.

Not only is the switching mechanism uncomplicated, but so is the patented procedure required to graft spiropyran molecules to poly(ether sulfone). "We used a relatively simple two-step process that could be easily incorporated into a commercial manufacturing process," Belfort says. "The relative ease of this grafting and switching process suggests many industrial opportunities."

In addition to bioseparations, Belfort envisions a number of potential applications for the materials, ranging from new membranes for treating polluted water to the targeted release of drugs in the body.

For example, in recent years researchers have developed "lab-on-a-chip" technology for automating laboratory processes on extremely small scales. Belfort notes that the new material could be employed as a surface valve that can be opened and closed by applying light, offering the ability to control liquid flow in a chip's ultra-tiny channels.

And in sensors designed to detect biological agents, the ability to control the polarity of the membrane could help reduce the attachment of unwanted proteins, providing more accurate readings, according to Belfort.


'"/>

Source:Rensselaer Polytechnic Institute


Related biology news :

1. Sticky mice lead to discovery of new cause of neurodegenerative disease
2. Shampoo detergent added to paint makes surfaces self-sterilizing
3. Bacteria can survive for weeks on hospital surfaces
4. Researchers to develop active nanoscale surfaces for biological separations
5. Interfering RNA silences genes in slippery immune cells
6. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
7. Source of molecular triggers in cutaneous T cell lymphoma identified
8. Plants, animals share molecular growth mechanisms
9. NYU researchers simulate molecular biological clock
10. Scientists reveal molecular secrets of the malaria parasite
11. Scientists identify molecular events that drive cell senescence
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
(Date:3/30/2017)... , March 30, 2017 The research ... system for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D ... a new realm of speed and accuracy for use in identification, ... an affordable cost. ... ...
(Date:3/27/2017)... March 27, 2017  Catholic Health Services (CHS) ... Systems Society (HIMSS) Analytics for achieving Stage 6 ... sm . In addition, CHS previously earned a ... using an electronic medical record (EMR). ... level of EMR usage in an outpatient setting.  ...
Breaking Biology News(10 mins):
(Date:6/20/2017)... NEWTOWN SQUARE, Pa. , June 20, 2017 /PRNewswire/ ... technology, is pleased to announce the issuance of a ... treating gout or hyperuricemia by the U.S. Patent and ... Biotech Inc., a winner of the Buzz of Bio ... , is akin to developing non-drug approaches to ...
(Date:6/19/2017)... ... June 19, 2017 , ... EDETEK, ... reported today that it is launching two new additions of its award-winning cloud-based ... new capabilities at the DIA 2017 Annual Meeting in Chicago, IL, June 19-22, ...
(Date:6/16/2017)... ... June 16, 2017 , ... CTNext , Connecticut’s ... Awards (EIA), held at The LOFT at Chelsea Piers in Stamford. , Nine finalists, ... a panel of judges for an opportunity to secure $10,000 awards to help support ...
(Date:6/15/2017)... ... June 15, 2017 , ... DuPont ... Biofuels, will be speaking at Bloomberg’s 2017 Sustainable Business Summit: Seattle ... environmental and sustainability officials on a panel titled “Developing a Corporate Renewables Strategy.” ...
Breaking Biology Technology: