Navigation Links
Stable polymer nanotubes may have a biotech future

Editor : See how a nanotube is created in this cool movie

Scientists at the National Institute of Standards and Technology (NIST) have created polymer nanotubes that are unusually long (about 1 centimeter) as well as stable enough to maintain their shape indefinitely. Described in a new paper in Proceedings of the National Academy of Sciences,* the NIST nanotubes may have biotechnology applications as channels for tiny volumes of chemicals in nanofluidic reactor devices, for example, or as the "world's smallest hypodermic needles" for injecting molecules one at a time.

Carbon nanotubes are of keen interest in nanotechnology research, especially for making ultrastrong fibers and other structures. Nanotubes made from other materials are used for transport in biochemical applications, but are typically fragile and usually collapse within a few hours. The NIST team developed processes for extending the shelf life of polymer nanotubes--considered essential for commercial applications--and forming sturdy nanotube network structures.

First the researchers made tiny, fluid-filled spherical containers with bi-layer membranes consisting of polymers with one end that likes water and one end that does not. (These fluid-filled containers are a spin-off of liposomes, artificial cells with fatty membranes used in cosmetics and for drug delivery.) The researchers made the membranes stretchy by adding a soap-like fluid to change the polymer membranes' mechanical properties. Then they used "optical tweezers" (highly focused infrared lasers) or tiny droppers called micropipettes to pull on the elastic membranes to form long, double-walled tubes that are less than 100 nanometers in diameter. (View a movie of this process at: http://www.nist.gov/public_affairs/images/Polymer_Nanotu bes_Animation.htm.)

A chemical was added to break bonds between atoms in one section of the polymers and induce new bonds to form between the two different sections, forming a rigid "cross-linked" membrane. The nanotubes are then snipped free from the parent cell with an "optical scalpel" (highly focused ultraviolet laser pulse). The nanotubes maintain their shape even after several weeks of storage, and can be removed from the liquid solution and placed on a dry surface or in a different container. The optical tweezers can be used to custom build nanotube network structures. The work was supported in part by the Office of Naval Research.


'"/>

Source:National Institute of Standards and Technology (NIST)


Related biology news :

1. New RNA polymerase discovered in plants
2. DuPonts first biologically derived polymer receives global recognition
3. Triple threat polymer captures and releases
4. MIT engineers probe spiders polymer art
5. Researcher examines polymers created with poultry feathers
6. Applied scientists create wrinkled skin on polymers
7. Gadonanotubes greatly outperform existing MRI contrast agents
8. Modifications render carbon nanotubes nontoxic
9. Nanoparticles, nanoshells, nanotubes: How tiny specks may provide powerful tools against cancer
10. Carbon nanotubes that detect disease-causing mutations developed by Pitt researcher
11. Detection of DNA on nanotubes offers new sensing, sequencing technologies
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   ... data sensor technology, and STMicroelectronics (NYSE: ... spectrum of electronics applications, announced today the launch ... kit for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, ...
(Date:12/16/2016)... 16, 2016 The global wearable medical device market, in ... 2021 from USD 5.31 billion in 2016, at a CAGR of ... ... technological advancements in medical devices, launch of a growing number of ... connectivity among healthcare providers, and increasing focus on physical fitness. ...
(Date:12/15/2016)... , Dec. 15, 2016 Advancements ... experience, health wellness and wellbeing (HWW), and ... in three new passenger vehicles begin to ... gesture recognition, heart beat monitoring, brain wave ... facial monitoring, and pulse detection. These will ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... January 12, 2017 , ... ... VTI, Vertebral Technologies, Inc., announces the successful outcome of the first lumbar ... 2016, VTI (Vertebral Technologies, Inc.) has partnered with Mexico-based medical product company ...
(Date:1/12/2017)... , January 12, 2017 ... the world,s biggest facility for producing mycorrhizae. The Centre ... nutrient tapping potential of mycorrhizae and developed a technology ... ... http://mma.prnewswire.com/media/456932/PRNE_TERI_Logo.jpg) The TERI facility has ...
(Date:1/11/2017)... , ... January 11, 2017 , ... ... Clinical Cancer Research show early promise of the investigational anti-cancer agent tucatinib (formerly ... median 5 previous treatment regimens. Twenty-seven percent of these heavily pretreated patients saw ...
(Date:1/11/2017)... , ... January 11, 2017 , ... ... year and costing healthcare systems more than $23.7 billion, healthcare systems are ... , Among the most common sepsis-causing pathogens are bacteria and the yeast ...
Breaking Biology Technology: