Navigation Links
Solution to bacterial mystery promises new drugs

A 25-year quest to identify the first biochemical step that many disease-causing bacteria use to build their membranes has led to a discovery that holds promise for effective, new antibiotics against these bacteria, according to investigators at St. Jude Children's Research Hospital. The finding is significant because the biochemical step the antibiotic would block is not used by humans. Therefore, such a drug would not cause dangerous side effects.

A report on this finding appears in the September 1 issue of Molecular Cell.

The discovery also demonstrated that current textbooks use the wrong type of bacterium as a model to explain a critical biochemical step that most disease-causing bacteria use to make their membranes, according to Charles Rock, Ph.D., a member of the St. Jude Department of Infectious Diseases and senior author of the paper. As bacteria grow in size or divide, they must make additional membrane using a series of biochemical reactions. The first step in this process is the transfer of a fatty acid to a molecule called G3P. Bacteria then convert this molecule into a variety of other molecules called phospholipids, which are the building blocks of membranes.

"We identified a biochemical process that uses a previously unrecognized molecule as a raw material to make phospholipid," Rock said. "That discovery solved a mystery that has puzzled researchers for 25 years."

Scientists have used E. coli bacteria for many years as a model to understand how disease-causing bacteria make membrane phospholipids, but E. coli is an unsuitable model for most pathogens (disease-causing bacteria), according to Rock.

First, E. coli is a so-called gram-negative bacterium, while many of the pathogens researchers are interested in are gram-positive, Rock noted. Among those gram-positive organisms are Staphylococcus aureus, which causes skin infections and serious blood infections, and Streptococcus pneumoniae, which causes pneu monia. The terms "gram-positive" and "gram-negative" refer to the response of bacteria to a standard laboratory process by which they are stained as a first step in identification.

Laboratory strains of E. coli do not cause disease; and the enzyme E. coli uses during the first step in making membranes does not exist in most other bacteria, including gram-positive pathogens. Therefore, the way gram-positive bacteria make phospholipid building blocks remained a mystery for over more than two decades. Now, however, the St. Jude team reports that the gram-positive pathogens use two enzymes, called PlsX and PlsY, to kick off phospholipid synthesis.

"In fact, the biochemical pathway that uses PlsX and PlsY is the most widely distributed bacterial pathway for initiating the production of phospholipids," explained the study's first author, Ying-Jie Lu, Ph.D., of the St. Jude Department of Infectious Diseases. "It turns out that E. coli is more of an oddball rather than in the mainstream when it comes to how it makes membranes."

E. coli fuses a molecule called G3P with a fatty acid in a single step. Rock's team showed that gram-positive pathogens first use PlsX to synthesize a compound called fatty acyl-phosphate, then use PlsY to transfer the fatty acid to G3P. These steps initiate membrane phospholipid formation required for cell growth.

"Our discovery of PlsX and PlsY not only solved a troublesome mystery," Rock said. "It's also important because identifying the essential components required for disease-causing bacteria to grow and multiply is a key part of developing new strategies for controlling infections."


'"/>

Source:St. Jude Children's Research Hospital


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Solution to Pollution: New Bacteria Eats Toxic Waste
3. Solutions that reduce death of marine life reeled in by International Smart Gear Competition
4. Solution to legionella
5. Anti-bacterial additive widespread in U.S. waterways
6. A bacterial genome reveals new targets to combat infectious disease
7. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
8. Scientists discover that host cell lipids facilitate bacterial movement
9. Protein prevents detrimental immune effects of bacterial sepsis
10. Researchers develop new method for facile identification of proteins in bacterial cells
11. A virus-like hitchhiker may trigger bacterial meningitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/14/2017)... (NYSE: IBM ) is introducing several innovative partner startups ... collaboration between startups and global businesses, taking place in ... nine startups will showcase the solutions they have built with ... France is one of the ... percent increase in the number of startups created between 2012 ...
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
(Date:10/9/2017)... Jupiter, FL (PRWEB) , ... October 09, 2017 , ... ... episode, scheduled to broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on ... Agriculture industry is faced with the challenge of how to continue to feed a ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... consulting for microscopy and surface analysis, Nanoscience Instruments is now expanding into ... a broad range of contract analysis services for advanced applications. Services will ...
(Date:10/6/2017)... ... October 06, 2017 , ... On Tuesday, October 24th, ABC² ... the first-ever adaptive clinical trial for glioblastoma (GBM). The featured speaker will be ... and open to the public, but registration is required. , WHAT: ABC² ...
Breaking Biology Technology: