Navigation Links
Solution to bacterial mystery promises new drugs

A 25-year quest to identify the first biochemical step that many disease-causing bacteria use to build their membranes has led to a discovery that holds promise for effective, new antibiotics against these bacteria, according to investigators at St. Jude Children's Research Hospital. The finding is significant because the biochemical step the antibiotic would block is not used by humans. Therefore, such a drug would not cause dangerous side effects.

A report on this finding appears in the September 1 issue of Molecular Cell.

The discovery also demonstrated that current textbooks use the wrong type of bacterium as a model to explain a critical biochemical step that most disease-causing bacteria use to make their membranes, according to Charles Rock, Ph.D., a member of the St. Jude Department of Infectious Diseases and senior author of the paper. As bacteria grow in size or divide, they must make additional membrane using a series of biochemical reactions. The first step in this process is the transfer of a fatty acid to a molecule called G3P. Bacteria then convert this molecule into a variety of other molecules called phospholipids, which are the building blocks of membranes.

"We identified a biochemical process that uses a previously unrecognized molecule as a raw material to make phospholipid," Rock said. "That discovery solved a mystery that has puzzled researchers for 25 years."

Scientists have used E. coli bacteria for many years as a model to understand how disease-causing bacteria make membrane phospholipids, but E. coli is an unsuitable model for most pathogens (disease-causing bacteria), according to Rock.

First, E. coli is a so-called gram-negative bacterium, while many of the pathogens researchers are interested in are gram-positive, Rock noted. Among those gram-positive organisms are Staphylococcus aureus, which causes skin infections and serious blood infections, and Streptococcus pneumoniae, which causes pneu monia. The terms "gram-positive" and "gram-negative" refer to the response of bacteria to a standard laboratory process by which they are stained as a first step in identification.

Laboratory strains of E. coli do not cause disease; and the enzyme E. coli uses during the first step in making membranes does not exist in most other bacteria, including gram-positive pathogens. Therefore, the way gram-positive bacteria make phospholipid building blocks remained a mystery for over more than two decades. Now, however, the St. Jude team reports that the gram-positive pathogens use two enzymes, called PlsX and PlsY, to kick off phospholipid synthesis.

"In fact, the biochemical pathway that uses PlsX and PlsY is the most widely distributed bacterial pathway for initiating the production of phospholipids," explained the study's first author, Ying-Jie Lu, Ph.D., of the St. Jude Department of Infectious Diseases. "It turns out that E. coli is more of an oddball rather than in the mainstream when it comes to how it makes membranes."

E. coli fuses a molecule called G3P with a fatty acid in a single step. Rock's team showed that gram-positive pathogens first use PlsX to synthesize a compound called fatty acyl-phosphate, then use PlsY to transfer the fatty acid to G3P. These steps initiate membrane phospholipid formation required for cell growth.

"Our discovery of PlsX and PlsY not only solved a troublesome mystery," Rock said. "It's also important because identifying the essential components required for disease-causing bacteria to grow and multiply is a key part of developing new strategies for controlling infections."


'"/>

Source:St. Jude Children's Research Hospital


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Solution to Pollution: New Bacteria Eats Toxic Waste
3. Solutions that reduce death of marine life reeled in by International Smart Gear Competition
4. Solution to legionella
5. Anti-bacterial additive widespread in U.S. waterways
6. A bacterial genome reveals new targets to combat infectious disease
7. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
8. Scientists discover that host cell lipids facilitate bacterial movement
9. Protein prevents detrimental immune effects of bacterial sepsis
10. Researchers develop new method for facile identification of proteins in bacterial cells
11. A virus-like hitchhiker may trigger bacterial meningitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... April 13, 2017 UBM,s Advanced Design and ... will feature emerging and evolving technology through its 3D ... will run alongside the expo portion of the event ... and demonstrations focused on trending topics within 3D printing ... and manufacturing event will take place June 13-15, 2017 at ...
(Date:4/11/2017)... PALM BEACH GARDENS, Fla. , April 11, ... biometric identity management and secure authentication solutions, today ... million contract by Intelligence Advanced Research Projects Activity ... technologies for IARPA,s Thor program. "Innovation ... the onset and IARPA,s Thor program will allow ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... ... wash is a basic first aid supply for any work environment, but most personal eye ... first if a dangerous substance enters both eyes? It’s one less decision, and likely quicker ... eye piece. , “Whether its dirt and debris, or an acid or alkali, getting anything ...
(Date:10/11/2017)... ... 11, 2017 , ... Disappearing forests and increased emissions are the main causes ... each year. Especially those living in larger cities are affected by air pollution related ... the most pollution-affected countries globally - decided to take action. , “I knew I ...
(Date:10/10/2017)... Philadelphia, PA (PRWEB) , ... October 10, 2017 ... ... University City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. ... accept the award for Excellence in Volunteer Experience from US2020. , US2020’s mission ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... of 13 prestigious awards honoring scientists who have made outstanding ... a scheduled symposium during Pittcon 2018, the world’s leading conference and exposition for ...
Breaking Biology Technology: