Navigation Links
Signal protein shows promise for blocking tumor promoters in skin cells

A protein with the ironic name "Srcasm" can counteract the effects of tumor-promoting molecules in skin cells, according to new research by investigators at the University of Pennsylvania School of Medicine. Using animal models, the researchers discovered that Srcasm acts like a brake in epithelial cells, preventing uncontrolled cell growth caused by a family of proteins called Src kinases. This finding, published online in the Journal of Biological Chemistry, suggests a target for future gene therapy to treat skin, head, neck, colon, and breast cancers.

Investigators have known for decades that Src kinase proteins can promote tumor formation. Src kinase activity is elevated in most skin cancers and in common carcinomas, including those of the breast and colon. At the same time, levels of the signaling molecule Srcasm are typically low in tumor cells, notes senior author John Seykora, MD, PhD, Assistant Professor of Dermatology. The current findings show that Srcasm can reduce the amount of Src kinases in cells; they have also shown that increased activity of these kinases is associated with cancerous skin lesions.

Src kinase proteins act like messengers, sending signals that control cellular growth. Found just inside the cell membrane, they conduct signals from cell surface receptors to the proteins that promote growth. Src kinases can be activated during cell division or through mutation. If these proteins are too active, they promote rapid cell growth that can spin out of control. In skin cells, Src kinases and Srcasm are involved in signaling pathways that control cell growth and differentiation.

See Saw Action
The researchers decided to test whether Srcasm could counteract the errant effects of Src kinases. They developed strains of mice with high levels of Srcasm, which had normal skin, and other strains that over-expressed the Src-kinase called Fyn, which resulted in uncontrolled cell growth with thick, scaly, hairless plaque s on the skin. These plaques, or lesions, resembled precursors of cancer. Breeding experiments with the mice indicated that high Srcasm levels counteracted the effects of Fyn.

The findings reveal that levels of Fyn and Srcasm work in a kind of see-saw ?when Srcasm production is low, dangerous amounts of Fyn can build up in cells. But when Srcasm production is increased, Fyn levels go down. "The binding of Srcasm to Fyn regulates Fyn's persistence in the cell," says Seykora. "If Srcasm is low, Fyn persists longer and sends more growth-promoting signals."

Reversing Tumors
Eventually, Srcasm might play a role in targeted gene therapies for cancers that are triggered by activated Src kinases. Such a therapy would likely use an adenovirus to carry a gene that codes for Srcasm into skin cells to increase Srcasm production, as used in some other gene therapy treatments. Initially, clinicians may try this method on oral cavity and skin cancers.

Next, the Penn researchers will determine whether Srcasm can actually reverse tumor formation in skin. Seykora's team has already prepared an adenovirus and mice with the tumor-forming Src kinases expressed in their skin. Within six months, the group expects to know whether Srcasm can decrease squamous cell carcinoma formation in skin, mentions Seykora.
'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Signaling protein builds bigger, better bones in mice
2. Computational Method Speeds Mapping of Cell Signaling Networks
3. Signaling for cartilage
4. New, automated tool successfully classifies and relates proteins in unprecedented way
5. New binding target for oncogenic viral protein
6. Controversial drug shown to act on brain protein to cut alcohol use
7. Timing is everything: First step in protein building revealed
8. UWs Rosetta software to unlock secrets of many human proteins
9. Researchers find how protein allows insects to detect and respond to pheromones
10. Ancient olfaction protein is shared by many bugs, offering new pest control target
11. Automatic extraction of gene/protein biological functions from biomedical text

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... Iowa (PRWEB) , ... October 12, 2017 , ... ... based in Vilnius, Lithuania, announced today that they have entered into a multiyear ... is to provide CRISPR researchers with additional tools for gene editing across all ...
(Date:10/12/2017)... San Diego, CA (PRWEB) , ... ... ... BioInformatics (https://www.onramp.bio/ ) has launched Rosalindâ„¢, the first-ever genomics analysis platform ... eliminating all bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, ...
(Date:10/11/2017)... Palo Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... is set to take place on 7th and 8th June 2018 in San Francisco, ... and policy influencers as well as several distinguished CEOs, board directors and government officials ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Disappearing forests ... the lives of over 5.5 million people each year. Especially those living in larger ... startup Treepex - based in one of the most pollution-affected countries globally - decided ...
Breaking Biology Technology: