Navigation Links
Sickle cell disease corrected in human models using stem cell-based gene therapy

In a study to be published in the January 2006 issue of Nature Biotechnology, researchers led by a team of scientists at Memorial Sloan-Kettering Cancer Center have devised a novel strategy that uses stem cell-based gene therapy and RNA interference to genetically reverse sickle cell disease (SCD) in human cells. This research is the first to demonstrate a way to genetically correct this debilitating blood disease using RNA interference technology.

To prevent the production of the abnormal hemoglobin that causes sickle cell disease, a viral vector was introduced in cell cultures of patients who have the disease. The vector carried a therapeutic globin gene harboring an embedded small interfering RNA precursor designed to suppress abnormal hemoglobin formation. Tested in adult stem cells from SCD patients, researchers found that the newly formed red blood cells made normal hemoglobin and suppressed production of the sickle shaped hemoglobin typical of the disease.

"Sickle cell disease can only be cured by transplanting healthy blood-forming stem cells from another individual, but this option is not available to most patients due to the difficulty in finding a compatible donor," explained Michel Sadelain, MD, PhD, of the Immunology Program at MSKCC and the study's senior author. "By using gene transfer, there is always a donor match because the patient's own stem cells are used to treat the disease."

Sickle cell disease is a genetic condition that causes an abnormal type of hemoglobin to be made in red blood cells. The aggregation of hemoglobin S inside red cells interferes with the body's blood cells' ability to flow through small blood vessels, depriving tissues of adequate oxygen supply. This can cause pain, anemia, infections, organ damage, and stroke. Approximately 80,000 people in the United States have this inherited condition, which is primarily found in people of African, Mediterranean, Indian, or Middle Eastern origin. There is no kn own cure other than stem cell transplantation.

To treat SCD, Sloan-Kettering scientists devised a novel engineering strategy combining RNA interference with globin gene transfer by creating a therapeutic transgene, consisting of the gamma-globin gene and small interfering RNA specific for beta S-globin, the globin mutant chain that causes sickle cell disease.

"An innovative and sophisticated approach was needed to genetically engineer hematopoietic stem cells using a practical and clinically applicable process. The transferred gene must not disrupt the cells' normal functions," explained Isabelle Riviere, PhD, Co-Director of the Gene Transfer and Somatic Cell Engineering Facility and a study co-author.

The new gene had two functions -- produce normal hemoglobin and suppress the generation of sickle shaped hemoglobin S. The therapeutic gene was engineered into a lentiviral vector and introduced into hematopoietic stem cells. After the cells received the treatment, they made normal hemoglobin.

"This proved our hypothesis that you can simultaneously add one function and delete another in the same cell and obtain synergistic genetic modifications within a single cell," said Selda Samakoglu, PhD, a member of Dr. Sadelain's laboratory and the study's first author. "In this case, we used the technique to correct sickle cell disease, but it should be broadly applicable to use therapeutically in stem cells or malignant cells."


'"/>

Source:Memorial Sloan-Kettering Cancer Center


Related biology news :

1. Discovery Promises Simpler Therapy for Sickle Cell Disease
2. Sickle cell and protection against malaria
3. Neuronal traffic jam marks early Alzheimers disease
4. Scientists detect probable genetic cause of some Parkinsons disease cases
5. Ecological destruction fuels emerging diseases
6. Newly discovered virus linked to childhood lung disorders and Kawasaki disease
7. U of M researcher examines newly emerging deadly disease
8. Marburg virus disease in Angola - update
9. Molecular machine may lead to new drugs to combat human diseases
10. Female sex hormones play a vital role in defense against sexually transmitted diseases
11. A bacterial genome reveals new targets to combat infectious disease
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/2/2017)... LONDON , March 2, 2017 Who ... infringement lawsuits? Download the full report: https://www.reportbuyer.com/product/4313699/ ... ON THE FINGERPRINT SENSOR FIELD? Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:2/28/2017)... News solutions for biometrics, bag drop and New ADA-compliant ... At PTE ... March, Materna will present its complete end-to-end passenger journey, ... real benefit for passengers. To accelerate the whole passenger handling ... solutions to take passengers through the complete integrated process with ...
(Date:2/24/2017)... Spain , Feb. 24, 2017  EyeLock LLC, a ... demonstrate its elite iris biometric solution on the ... X16 LTE at Mobile World Congress 2017 ... Qualcomm,s Booth in Hall 3, Stand 3E10. ... the Qualcomm Haven™ security platform—a combination of ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... SOUTH PLAINFIELD, N.J. and WASHINGTON ... Leading global genomics service provider, GENEWIZ, will launch single-cell sequencing ... Meeting at the Walter E. Washington Convention Center in ... Single-Cell RNA-Seq allows researchers to perform differential gene expression ... Highlights: ...
(Date:3/28/2017)... National Pharmaceutical Council (NPC) today announced that Ipsen Biopharmaceuticals, ... its newest member. David Cox , PhD, Vice ... ), will serve as his company,s representative on ... have Ipsen and Dr. Cox join NPC as members," ... their insights in helping us identify and address health ...
(Date:3/28/2017)... Calif. , March 28, 2017 ... of international life sciences corporation Anpac Bio-Medical ... set a new, international record, processing and reporting ... "Cancer Differentiation Analysis" (CDA) liquid biopsy ... World Nobel Prize Laureate Summit publications, Anpac Bio,s ...
(Date:3/28/2017)... ... March 28, 2017 , ... LabKey and collaborator ... newest software solution, LabKey Biologics . Built in collaboration with Just and ... LabKey Biologics provides drug research teams tools for biological entity registration, assay data ...
Breaking Biology Technology: