Navigation Links
Shorter colds, milder flu may follow from newly revealed immune mechanism

Enlisted to help fight viral infections, immune cells called macrophages consume virus-infected cells to stop the spread of the disease in the body. Now researchers at Washington University School of Medicine in St. Louis have uncovered how macrophages keep from succumbing to the infection themselves. Boosting this mechanism may be a way to speed recovery from respiratory infections.

The researchers found that a specific protein produced in the course of respiratory viral infections can serve to protect macrophages from an untimely death. Their report will appear in an upcoming issue of Nature Medicine and is available on October 9 at the journal's website.

"If the macrophages were to die, the infection would spread further," says senior author Michael J. Holtzman, M.D., the Selma and Herman Seldin Professor of Medicine and director of pulmonary and critical care medicine. "So the macrophages use a protein called CCL5 to ensure that the infection process can be stopped before it goes any further."

Holtzman thinks the information about the role of CCL5 may lead to new methods to hasten recovery from respiratory viral inflections like influenza or the common cold, which at present have no pharmacological cure.

CCL5's role was discovered while Holtzman's group was testing mice that had respiratory infections. They found that the sick mice produced massive amounts of CCL5--about a hundred times more than they produced when healthy.

"CCL5 was just off the chart compared to the other 30,000 mouse genes," Holtzman says. "Then the challenge was to figure out why CCL5 gene expression should be so far above everything else."

They found that mice lacking the gene to make CCL5 died much more frequently from respiratory virus infection than normal mice. Examining lung tissues from these CCL5-deficient mice, the researchers saw that macrophages--which would ordinarily enter the airway, clean up virus-infected cells and then leave-- remained stuck in the airway tissue. It became apparent that the macrophages were unable to leave because they were infected with virus and so were dying prematurely.

Unexpectedly, the investigators found that CCL5 turns on signals that allow cells to escape virus-induced death. These signals are termed anti-apoptotic because they work against a process of programmed cell death called apoptosis. The CCL5-induced anti-apoptotic signals therefore help keep macrophages alive, which allows them to continue their job in the face of a viral onslaught.

"CCL5's role is somewhat of a paradox," Holtzman says. "Ordinarily, apoptosis is a protective mechanism. Death of infected lung airway lining cells, or epithelial cells, would deprive the virus of its home and protect the host against the spread of infection. But in the case of the macrophage, it is the opposite. Preventing the death of the macrophage allows the host to ultimately clear the viral debris and so finally halt the infection. Balancing these cell death and survival pathways can determine whether the virus or the host wins the battle."

Next, the researchers will look further at precisely how CCL5 prevents cell death.

"In this initial study, we identified the cellular receptor for CCLR and some of the first downstream signals that convey a survival message," Holtzman says. "Now, we aim to define more specific signaling proteins that allow the cell to live or die in the face of infection. Identifying these signals may allow us to regulate these signals during an infection, and so make epithelial cells and macrophages more effective to shorten recovery time or lessen symptoms."

The ability to decrease the severity of lung infections may also have important implications for asthma, COPD (chronic obstructive pulmonary disease) and other chronic lung diseases, according to Holtzman.

"We commonly see children, for example, who develop these same types of severe respirato ry infections as infants and then go on to develop asthma later," Holtzman says. "If we can improve the outcome from this first interaction with the viruses, we are very likely to also prevent the later development of persistent airway disease."


'"/>

Source:Washington University School of Medicine


Related biology news :

1. Geoscientists follow arsenic from chicken feed to streambeds
2. Study: Paramedics save more lives when they dont follow the rules
3. Evolution follows few of the possible paths to antibiotic resistance
4. Use of amino acid supplement following a heart attack provides no benefit, may be harmful
5. Cell death following blood reflow injury tracked to natural toxin
6. Long-term cancer risk follows stem cell transplant recipients
7. High levels of blindness in southern Sudan following years of war
8. History-hunting geneticists can still follow familiar trail
9. PNAS study reveals why organs fail following massive trauma
10. Imaging techniques permit scientists to follow a day -- or four -- in the life of a cell
11. Palaus coral reefs show differential habitat recovery following the 1998 bleaching event
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
(Date:4/13/2016)... -- IMPOWER physicians supporting Medicaid patients in Central ... in telehealth thanks to a new partnership with higi. ... patients can routinely track key health measurements, such as ... when they opt in, share them with IMPOWER clinicians ... retail location at no cost. By leveraging this data, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... ... June 27, 2016 , ... Cancer ... what they believe could be a new and helpful biomarker for malignant pleural ... Click here to read it now. , Biomarkers are components in the ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... discussions on a range of subjects including policies, debt and ... Poloz. Speaking at a lecture to the Canadian ... to the country,s inflation target, which is set by both ... "In certain areas there needs to be ... why not sit down and address strategy together?" ...
Breaking Biology Technology: