Navigation Links
Scientists use stem cells to grow cartilage

Scientists from Imperial College London have successfully converted human embryonic stem cells into cartilage cells, offering encouragement that replacement cartilage could one day be grown for transplantation.

Cartilage is the dense connective tissue usually found between bones to allow the smooth movement of joints.

Research to be published in Tissue Engineering shows how the Imperial team directed embryonic stem cells to become cartilage cells. This could allow doctors to grow cartilage for transplantation for a number of injuries and medical problems, including sports injuries, new cartilage for people having hip replacements, and even for cosmetic surgery.

Dr Archana Vats, from Imperial College London and first author of the paper, said: "The ability to grow cartilage using stem cells could have enormous implications for a number of medical problems. With the UK's increasing ageing population there will be an inevitable increase in problems created by people living longer. Although doctors have been able to carry out joint replacements for a number of years, it has not possible to replace the worn out cartilage. By replacing the cartilage it may be possible to avoid the need for a joint replacement for some time."

The research involved growing human embryonic stem cells with chondrocytes or cartilage cells, in Petri dishes in the laboratory in a specialised system that encouraged them to change into cartilage cells. When this was compared with just growing the human embryonic stem cells alone, the mixed stem cells and cartilage were found to have higher levels of collagen, the protein constituent of cartilage.

The cells were then implanted in mice on a bioactive scaffold for 35 days. When they removed the scaffold, the cells were found to have formed new cartilage, showing they can be successfully transplanted in living tissue.

The scientists also believe this technique could be used in cosmetic and reconstructi ve surgery. When removing head and neck cancers, surgeons often have to cut away parts of cartilage, and then take grafts from other parts of the body. With this new technique doctors would potentially be able to take stem cells from the patient, grow them in a laboratory, and then transplant them after the surgery.

This work builds on an earlier collaboration between medical researchers and engineers at Imperial College. The team had previously developed the bioactive scaffold which was used as a scaffold to grow the stem cells on.

Dr Anne Bishop, from Imperial College London, and one of the authors, added: "The potential of stem cells has been widely known for many years, but it is only recently we have started to make progress towards the ultimate goal of using them in patients. These results show it may be as little as five years before this advance can be used to directly benefit patients for a huge variety of illnesses and injuries."

The team included Professor Dame Julia Polak, Head of the Tissue Engineering and Regenerative Medicine Centre, Imperial College London, as well as Mr Neil Tolley, ENT Dept, St Mary's Hospital and also researchers from the University of Bristol.


'"/>

Source:Imperial College London


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/22/2017)... Lithuania , March 21, 2017   ... and object recognition technologies, today announced the release ... kit (SDK), which provides improved facial recognition using ... cameras on a single computer. The new version ... to improve accuracy, and it utilizes a Graphing ...
(Date:3/20/2017)... Germany , March 20, 2017 At this ... Hamburg -based biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG ... is this year,s CeBIT partner country. At the largest German ... biometrics in use: fingerprint, face and iris recognition as well as DERMALOG´s ... ...
(Date:3/13/2017)... , March 13, 2017 Future of security: Biometric ... ... DERMALOGs Face Matching enables to match face pictures ... the basis to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric Face ...
Breaking Biology News(10 mins):
(Date:4/25/2017)... ... April 25, 2017 , ... ... Common Lisp (CL) development tools, and market leader for Semantic Graph Database ... enhancements now available within the most effective system for developing and deploying applications ...
(Date:4/25/2017)... ... April 25, 2017 , ... Leaders of Quorum Review IRB and ... multiple sessions at this week’s Association of Clinical Research Professionals (ACRP) 2017 Meeting ... clinical research. , "We are excited to present subject matter expertise on topics that ...
(Date:4/21/2017)... ... 2017 , ... The University of Connecticut, in partnership with ... startups through the UConn Innovation Fund. The $1.5 million UConn Innovation Fund was ... , The UConn Innovation Fund provides investments of up to $100,000 to companies ...
(Date:4/20/2017)... (PRWEB) , ... April 20, 2017 , ... ... Event , this new webinar will explore challenging patient cases when screening for ... the hospital, there may be a need for bridging parental anticoagulation especially for ...
Breaking Biology Technology: