Navigation Links
Scientists tie several cancers to common 'oncogene engine'

Researchers at Dana-Farber Cancer Institute report that a common "oncogene engine" ?a small family of malfunctioning cell growth switches ?drives several seemingly unrelated, lethal forms of cancer, including malignant melanoma. The finding suggests that it may be possible to attack these different cancers with the same therapy.

Reporting in the June issue of Cancer Cell, the scientists showed that a small transcription factor family, made up of several proteins that control the activity of key growth genes, functions abnormally in malignant melanoma, two forms of soft-tissue sarcomas, and a type of kidney cancer that mainly affects children. Still other cancers sharing the same causative mechanism may yet be found, the scientists said.

"One would have never thought of grouping these tumors together," said David E. Fisher, MD, PhD, a pediatric oncologist at Dana-Farber and Children's Hospital Boston, who is senior author of the paper. The lead author is Ian J. Davis, MD, PhD, of Dana-Farber and Children's Hospital Boston.

"The importance of this finding is that it suggests a common 'engine' is driving these seemingly unrelated cancers," Fisher said. "Therefore, it is plausible that common therapeutic strategies might be applied to the tumors as well." The newly grouped cancers ?melanoma, clear cell sarcoma, alveolar soft part sarcoma, and pediatric renal carcinoma ?are often lethal if surgery cannot completely remove them.

Dana-Farber researchers are already using these new insights in clinical trials of a cancer vaccine, GVAX, that previously has produced rare but dramatic responses in some patients with advanced melanoma. "We have just opened a trial to offer the same vaccine to patients with all of the other cancers in this related family," said Fisher. "Prior to this, virtually no rational experimental treatments were available for these diseases, and patients have already started coming from throughout the country to enlist in our trial."

The transcription factor family is collectively known as MiT. Its kingpin, a protein called MITF, is needed by the body to develop normally functioning melanocytes, the pigment-producing cells of the skin and hair. Mutations that disable MITF cause lack of pigment, as in albinism, but when the gene for MITF is amplified ?too many copies in a cell ?it can cause melanoma, because the growth genes that are regulated by MITF act like a stuck "on" switch for cell proliferation. Last year, investigators based at Dana-Farber (including Fisher and his colleagues) reported that the MITF gene is amplified in 20 percent of melanoma tumors.

In addition, Fisher and Scott R. Granter, MD, of Children's Hospital Boston ?also an author of the Cancer Cell article ?previously found that MITF was present in a dangerous type of soft-tissue tumor ?clear cell sarcoma ?that develops near muscles and tendons in teenagers and young adults. The scientists had been alerted to the possibility of MITF involvement because clear cell sarcoma tumors are sometimes pigmented ?a process requiring the MITF transcription factor. In this form of sarcoma, Fisher explained, the MITF gene is overactivated by an abnormal joining, or fusion, of two other genes. MITF, in turn, is directly responsible for malignant growth and survival of the cells. Suppression of MITF by genetic means in the laboratory is lethal to clear cell sarcoma.

While no drug currently exists to directly suppress MITF, the identification of MITF's role opens a door to potential therapies because the researchers have identified some of the genes and proteins that MITF regulates that new drugs could be used to block. One of the targets is Bcl-2, which enables cancer cells to survive when the body has ordered them to self-destruct, and another is CDK-2, a protein that is often abnormal in cancer.

Related to MITF in the MiT transcription factor family are three proteins named TFEB, TFE3, and TFEC. One of them, TFEB, is known to be abnormal in certain kidney carcinomas in children, and TFE3 is involved in another rare soft-tissue tumor, alveolar soft part sarcoma, which tends to affect female children and young adults.

"It is now apparent that all of these tumors share this central family of oncogenes that are functionally interchangeable," said Fisher, who is also a professor of pediatrics at Harvard Medical School. His team demonstrated this point by showing that when tumors in mice were shrunk by disabling one of the transcription factors, replacing it with another member of the family re-started the tumor's growth.In the short term, clinicians will attempt to exploit this interconnectedness by using therapies that may be effective against one tumor to try to treat other tumors, said Fisher. "In the longer term, the focus is on targeting the real culprit ?and that is the MiT transcription factors or their targets. There is lots of excitement, and I believe that is the way to really nail these tumors."


'"/>

Source:Dana-Farber Cancer Institute


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/6/2017)... NEWARK, Calif. , Jan. 5, 2017  Delta ... introduced its iris scanning technology for automotive at CESĀ® ... GNTX ) to demonstrate the use of ... to identify and authenticate the driver in a car, ... automobiles during the driving experience. Delta ID ...
(Date:12/22/2016)... NEW YORK , December 22, 2016 ... global provider of secure solutions for the e-Government, Public Safety, HealthCare, ... a subsidiary of SuperCom, has been selected to implement and deploy ... county in Northern California , further expanding its ... ...
(Date:12/16/2016)... 16, 2016 Research and Markets has announced ... Global Forecast to 2021" report to their offering. ... The biometric vehicle access ... a CAGR of 14.06% from 2016 to 2021. The market is ... to reach 854.8 Million by 2021. The growth of the biometric ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... YORK , January 20, 2017 ... Organization, cancer is one of leading causes of death ... 2012. Although the number of cancer related deaths increased ... 1990. Rising in incidence rate of various cancers continues ... to a research report by Global Market Insights, Inc. ...
(Date:1/19/2017)... Jan. 19, 2017  Market Research Future has a half cooked ... Liquid Biopsy is growing rapidly and expected to reach USD 450 ... Highlights ... Liquid Biopsy Market has been assessed as a swiftly growing market ... boom in the coming future. There has been a tremendous growth ...
(Date:1/19/2017)... Research and Markets ... the addition of the "Implantable Biomaterials Market Analysis ... report to their offering. Report Highlights: ... on current and future market trends to identify the investment opportunities ... base numbers Key market trends across the business segments, ...
(Date:1/19/2017)... GAITHERSBURG, Md. , Jan. 19, 2017 /PRNewswire/ ... a privately-held immunotherapeutics company targeting infectious diseases, announced ... the merger of PharmAthene and Altimmune in an ... Fund, HealthCap, Truffle Capital and Redmont Capital. The ... immunotherapeutics company with four clinical stage and one ...
Breaking Biology Technology: