Navigation Links
Scientists rid stem cell culture of key animal cells

Tackling a pressing and controversial technical barrier in stem cell biology, scientists at the WiCell Research Institute and the University of Wisconsin-Madison have crafted a recipe that allows researchers to grow human embryonic stem cells in the absence of mouse-derived "feeder" cells, long thought to be a source of potential contamination for the therapeutically promising cells.

The new findings, appear today (Feb. 17) in the journal Nature Methods and come on the heels of a recent University of California study showing that existing stem cell lines are already contaminated with an animal molecule. The potential threat of animal pathogens tainting human stem cell lines poses a problem for the safe clinical use of many, if not all, of the current cell lines now in use.

Until now, scientists have had to grow and sustain stem cells through the tedious daily task of generating mouse feeder cells from mouse embryos. Feeder cells, or fibroblasts, are connective tissue cells that form the matrix upon which stem cells grow.

The mouse feeder cells were an important ingredient in the mix of culture materials required to keep stem cells in their undifferentiated "blank slate" state. Embryonic stem cells are capable of forming any of the 220 tissues and cells in the human body and, in culture, are constantly trying to migrate down different developmental pathways. Maintaining stock cultures in their undifferentiated state is critical.

The feeder cell dogma now can be overturned, says lead investigator Ren-He Xu, a senior scientist at WiCell, a private, nonprofit research institute. "This work completely gets rid of the need for feeder cells," says Xu. "It also significantly reduces the daily labor of preparing the feeder cell-conditioned medium."

"It is important that the culture of human ES cells be simplified so that the average scientist can use them without extensive prior training," says James Thomson, a UW-Madison professor of a natomy and a co-author of the Nature Methods paper. "This development is a good step in that direction. Also, clinically, the feeder cells were one of the main sources of potential contamination with pathogens, so their elimination should improve safety. However, not all the animal components have been removed from the media yet, but this is an important step."

Working with three of WiCell's five human embryonic stem cell lines, Xu and his team explored the molecular interactions within the stem cell growth medium. He discovered that, in certain conditions, a protein known as fibroblast growth factor 2 (FGF2) accomplishes the same critical role that feeder cells are thought to play: ensuring that the stem cells remain in their undifferentiated state and capable of proliferation.

"We've got it down to the mechanism," Xu says.

Moreover, Xu made the surprising discovery that the very molecules that encourage human embryonic stem cells to differentiate appear to inhibit differentiation in mouse embryonic stem cells.

Aside from feeder cells, two other sources of animal material remain in stem cell culture materials. One, Matrigel, is a product that is essentially a plate-coating matrix of cells extracted from mouse tumors. Serum replacement, which is bovine in origin, is the other animal material still needed to culture stem cells.

Xu became interested in unveiling molecules derived from the mouse feeder cells because, in their absence, stem cells start to differentiate within two to three days. Xu started by evaluating the effect of changing stem cell growth conditions - using less feeder cell material, or no serum replacement, for instance.

Unexpectedly, Xu found that the presence of serum replacement promoted stem cell differentiation. Digging deeper, he found that serum replacement mimics the activity of bone morphogenetic protein (BMP), a molecule known to kick-start embryonic development, or in this case, cell differe ntiation.

If serum replacement triggers stem cell differentiation, Xu deduced, there must be feeder cell molecules that oppose BMP activity. Experiments confirmed this to be true.

Next, Xu elevated concentrations of FGF2, a protein routinely used for human embryonic stem cell culture, to test whether FGF2 preserves undifferentiated stem cells in the absence of BMP. The result was that "the cells looked perfect." Xu says he has grown the resulting stem cells in the desired undifferentiated state for almost a year.

Although the new work "dramatically reduces the possibility of contamination" from animal pathogens, Xu warns that the continued use of serum replacement and Matrigel means that contamination remains a concern. The ultimate goal, he says, would be to culture stem cells in media completely free of any animal products.


'"/>

Source:University of Wisconsin-Madison


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists develop new color-coded test for protein folding
11. Scientists identify genetic pathways essential to RNA interference
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/2/2016)... -- Perimeter Surveillance & Detection Systems, Biometrics ... Support & Other Service  The latest report ... analysis of the global Border Security market . ... $17.98 billion in 2016. Now: In November ... software and hardware technologies for advanced video surveillance. ...
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. , ... tests introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... ... ... In a new case report published today in STEM CELLS Translational Medicine, doctors ... being treated for breast cancer benefitted from an injection of stem cells derived from ... frequent side effect of cancer treatment. , Lymphedema refers to the swelling ...
Breaking Biology Technology: