Navigation Links
Scientists discover stage at which an embryonic cell is fated to become a stem cell

Cambridge scientists have discovered the stage at which some of the cells of a fertilised mammalian egg are fated to develop into stem cells and why this occurs. The findings of the study, which overturn the long-held belief that cells are the same until the fourth cleavage (division) of the embryo, are reported in today's edition of Nature.

After fertilisation, the cells of the embryo at first undergo equal, symmetrical divisions and unequal, asymmetrical ones that direct smaller daughter cells towards the inside of the embryo. These become the inner cell mass of stem cells. Previously, it was believed that the mammalian embryo starts its development with identical cells and only as these inside and outside cells form do differences between cells first emerge.

However, research led by Professor Magdelena Zernicka-Goetz, University of Cambridge, has revealed evidence to suggest that differences between the embryonic cells are already apparent at the 4-cell-stage, before the cells become partitioned between the inside or outside of the embryo. And those differences depend on the orientation and order of the very first cleavage divisions of the embryo.

Professor Zernicka-Goetz said, "Our findings were surprising since they showed that cells of the mammalian embryo first start to differ from each other much earlier in development than previously supposed but also they give us a real clue on how to manipulate embryonic cells so that they will develop with the properties of the natural stem cells of the embryo."

The study also found cell fate and transcription activity is determined by the level of a methylated form of histone H3, one of the basic proteins around which DNA is packaged and which when modified in this way affects gene expression. They found that the higher the levels of this modified form of histone H3, the more predisposed the mammalian embryonic cells were to develop the qualities of inner embryonic cells, a pop ulation that have stem-cell-like properties. Thus, their results show that manipulating epigenetic information in this protein in early mouse embryos can influence cell fate determination


'"/>

Source:University of Cambridge


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited ... to the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... the largest German biometrics company the two government leaders could see the ... well as DERMALOGĀ“s multi-biometrics system.   Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:6/14/2017)... , June 14, 2017   Micralyne Inc., ... and a primary supplier of sensors, is pleased ... Placentia, California to develop and ... (TSV).  The joint development of this technology leverages ... a truly flexible and cost effective Metal TSV ...
(Date:6/14/2017)... ... June 13, 2017 , ... ... the phenotype of an organism on a molecular level that is closely ... processing remain major bottlenecks to biomarker discovery in clinical-based metabolomics research. , ...
(Date:6/13/2017)... ... June 13, 2017 , ... Three ... Phase 1 Ventures (P1V) program. PolyCeramX, Recensa Therapeutics and Regennera, all P1V participants, ... , Phase 1 Ventures is a startup accelerator that helps launch and ...
(Date:6/13/2017)... PA and London UK (PRWEB) , ... June 13, 2017 , ... ... for Information and Study on Clinical Trial Participation (CISCRP) and the Society for Clinical ... Expert speakers will provide background on the purpose of eConsent and the ability for ...
Breaking Biology Technology: