Navigation Links
Scientists discover new genetic subtypes of common blood cancer

Scientists at Dana-Farber Cancer Institute and collaborators have identified four distinct genetic subtypes of multiple myeloma, a deadly blood cancer, that have different prognoses and might be treated most effectively with drugs specifically targeted to those subtypes.

A new computational tool based on an algorithm designed to recognize human faces plucked the four distinguishing gene patterns out of a landscape of many DNA alterations in the myeloma genome, the researchers report in the April issue of Cancer Cell.

These results "define new disease subgroups of multiple myeloma that can be correlated with different clinical outcomes," wrote the authors, led by Ronald DePinho, MD, director of Dana-Farber's Center for Applied Cancer Science.

Not only do the findings pave the way for treatments tailored to a patient's specific form of the disease, they also narrow down areas of the chromosomes in myeloma cells likely to contain undiscovered genetic flaws that drive myeloma, and which might turn out to be vulnerable to targeted designer drugs.

Kenneth Anderson, MD, medical director of the Jerome Lipper Multiple Myeloma Center at Dana-Farber and an author of the paper, said the findings "allow us to predict how patients will respond to current treatments based on a genetic analysis of their disease." In addition, the findings "identify many new genes implicated in the cause and progression of myeloma, and the product of those genes can be targeted with novel therapies."

Multiple myeloma, the second most common blood cancer after non-Hodgkin's lymphoma, is incurable, although some patients live for a number of years following diagnosis. About 50,000 people in the United States are living with the disease, and an estimated 16,000 new cases are diagnosed annually. Despite improvements in therapy, the five-year survival rate in multiple myeloma is only 32 percent and durable responses are rare.

The new report emerged from a co llaboration involving DePinho's Dana-Farber group, Cameron Brennan, MD, of Memorial Sloan-Kettering Cancer Center, and John Shaughnessy, MD, of the Myeloma Institute for Research and Therapy at the University of Arkansas for Medical Sciences. Lead authors are Daniel Carrasco, MD, PhD, and Giovanni Tonon, MD, PhD, of Dana-Farber, and Yongsheng Huang, MS, of the Myeloma Institute for Research and Therapy at the University of Arkansas for Medical Science.

Myeloma cells' genomes are scenes of rampant chaos: extra or missing chromosomes; pieces of broken chromosomes randomly reattached; genes that are mutated or amplified ?present in too many copies ?or are overexpressed or absent. The roles played by these myriad abnormalities in the initiation and progression of myeloma are only beginning to be understood, but it's been observed that different abnormalities are often found from one patient to the next.

Previously, scientists had identified two genetic subtypes of myeloma. One, called hyperdiploid MM, is characterized by extra copies of entire chromosomes, and patients with this subtype appear to fare better. The non-hyperdiploid form lacks these extra chromosomes and instead has abnormal rearrangements between different chromosomes, and the outlook is generally worse for these patients.

The collaborating researchers sought to cast a wide net to capture as many of the genetic flaws in myeloma cells as possible, creating a comprehensive atlas of this cancerous genome. First, they used a technique called high-resolution array CGH (comparative genomic hybridization) to analyze samples from 67 newly diagnosed patients provided by Shaughnessy in Arkansas. The CGH technique compared the genomes of a normal blood cell with various myeloma cells in search of differences. The goal was to identify recurrent copy number alterations ?hotspots on the chromosomes where genes were abnormally duplicated or lost across many different tumors.

The CGH an alysis netted a large number of areas showing such alterations in the myeloma cells from patients. Then the scientists asked whether any specific pattern or combination of these aberrations in an individual patient might help predict how aggressive the disease would be.

For this deeper analysis, the researchers created an algorithm based on a recently developed computational method designed to recognize individuals by facial features. It is called non-negative matrix factorization, or NMF. In the myeloma study, the algorithm was used to group the results in a way that yielded distinctive genomic features from the CGH data.

Four distinct myeloma subtypes based on genetic patterns emerged: Two of them corresponded to the non-hyperdiploid and hyperdiploid types, and the latter was found to contain two further subdivisions, called k1 and k2 When these subgroups were checked against the records of the patients from whom the samples were taken, it showed that those with the k1 pattern had a longer survival than those with k2.Digging still deeper, the scientists found evidence suggesting that certain molecular signatures within the subgroups are responsible for the differences in outcomes, providing a clear and productive path for further research.

This narrowing down of potential genes and proteins within the subgroups "is a huge advance," comments DePinho. "If you know that a certain gene is driving the disease and influences the clinical behavior of the disease in humans, it immediately goes to the top of the list as a prime candidate for drug development."


'"/>

Source:Dana-Farber Cancer Institute


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... 16, 2016   IdentyTechSolutions America LLC , ... and solutions and a cutting-edge manufacturer of software ... is offering seamless, integrated solutions that comprise IDT ... The solutions provide IdentyTech,s customers with combined physical ... from crime and theft. "We are ...
(Date:12/15/2016)... ... Markets has announced the addition of the "Global Military Biometrics Market ... the global military biometrics market to grow at a CAGR of 7.5% ... based on an in-depth market analysis with inputs from industry experts. The ... years. The report also includes a discussion of the key vendors operating ...
(Date:12/8/2016)... Research Future published a half cooked research report on Mobile Biometric ... Market is expected to grow over the CAGR of ~35% during ... ... Mobile Biometric Security and Service Market is increasing at a ... security from unwanted cyber threats. The increasing use of mobile device ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... BD (Becton, Dickinson and Company) (NYSE: BDX ), a ... live webcast of its Annual Meeting of Shareholders on Tuesday, January ... can be accessed from the BD corporate website at http://www.bd.com/investors/ ... ... BD is a global medical technology company that is ...
(Date:1/18/2017)... PUNE, India , January 18, 2017 According to ... Application (Cancer Diagnosis, Neuroscience, Cytology, Infectious Disease), & End User (Molecular Diagnostic Laboratories, ... market is expected to reach USD 739.9 Million by 2021 from USD 557.1 ... Continue Reading ... MarketsandMarkets Logo ...
(Date:1/18/2017)... 2017 Applied BioMath ( www.appliedbiomath.com ), ... research and development, today announced that Dr. ... of Applied BioMath, will present at the next ... Meeting on Thursday January 19, 2017 at the ... MA.   Dr. Burke,s talk "Quantitative Modeling and Simulation ...
(Date:1/18/2017)... ... ... Executive search firm Slone Partners proudly supports the SCOPE ... of the clinical trials segment. Hosted in Miami, this conference brings together renowned ... , As executive talent specialists in the industries central to clinical trials, ...
Breaking Biology Technology: