Navigation Links
Scientists discover a genetic switch that links animal growth and cancer

Laboratory discoveries by scientists at two universities may lead to new directions in cancer therapy drugs. The researchers have discovered that a genetic switch involved in growth and development of an animal is the same one used to prevent normal cells from becoming cancerous.

The findings are reported in the April 18 issue of Current Biology. Experiments were carried out by first author Masamitsu Fukuyama, a postdoctoral scientist working in the laboratories of Joel H. Rothman, a professor in the Department of Molecular, Cellular and Developmental Biology at the University of California, Santa Barbara, and Ann Rougvie, a professor in the Department of Genetics, Cell Biology, and Development at the University of Minnesota. Fukuyama is now an assistant professor at the University of Tokyo.

"The parallels between the control of development during the normal process of maturation and the control of cancer growth are striking," said Rothman. "We recognize that cancer cells in many ways simply mimic what normal cells do in a developing animal, only at an unfortunate time and place."

In life, there is a time to wait and a time to grow, Rothman explained. "Many creatures remain in a waiting state until conditions are right for growth. A tiny redwood, for example, can remain persistently arrested for years inside a seed. Only when the seed senses water will it sprout and initiate development into a mature tree. Many animals similarly halt their development until the environment is right for growth and development."

The process is the same with cells, the basic units of life. Many cells remain in a quiescent state, neither growing nor multiplying until they are triggered to do so by an environmental cue, such as a hormone or injury. Cells possess braking mechanisms that keep them in this quiescent state. When the brakes fail, cells that should be static start growing and dividing, leading to cancer. These brakes are proteins called tumor sup pressors.

Working with a tiny roundworm known as Caenorhabditis elegans, an important animal model in biomedical science, the researchers discovered that a tumor suppressor known as PTEN also functions to keep the animal in a waiting state by blocking cell growth when food is absent.

If these animals hatch from their eggs without any source of nutrition, they are able to remain in a perpetually young state for a long time without growing. When they eventually find food they start growing and maturing into adults. The researchers discovered that this juvenile-to-adult switch is controlled by PTEN. When the gene for PTEN is defective, the animals attempt to grow and become mature even when they have no food.

"The attempt of these animals to grow when they should not is not only analogous to the inappropriate growth and proliferation of cells during the formation of tumors in cancer, it also involves the same players," said Rothman. The research team found that PTEN functions with two other proteins –?known as protein kinases –?that are also involved in cancer progression.

This discovery means that other proteins that keep the brakes on growth might be found by looking for additional genes that keep these animals in an immature state.

"Now that we have information about the switch that keeps animals developmentally arrested, we can readily identify other genes involved in this process," said Rothman. Such genes might similarly be involved in the formation of cancers and could provide new therapeutic targets for intervention in cancer.

The current findings took about four years to discover. The worms used in the research develop quickly, growing from an egg to an adult in three days, as compared to mice, for example, which take several months. The similarities between the number and identity of genes in humans and worms allow researchers to extrapolate from worms to humans in their genetic research.


'"/>

Source:University of California - Santa Barbara


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... (PRWEB) , ... April 18, 2017 , ... ... Halo Labs . The move comes after the company changed focus to ... market, our new brand and our new technology,” says CEO Robert Hart. Founders ...
(Date:4/19/2017)... ... April 19, 2017 , ... ThermaGenix, the PCR Improvement Company, ... to several other early achievements at ThermaGenix, including the business formation and licensing ... ThermaGenix will use proceeds from the Series A-1 round to:, ...
(Date:4/19/2017)... ... April 19, 2017 , ... As part of ... accessible to novices as well as experienced users, attendees will gain a better ... screening tests. , Hemostasis testing quality is determined by preanalytical variables which ...
(Date:4/19/2017)... , April 19, 2017  As a ... Abuse and Heroin Summit ,  Proove® Biosciences, Inc. ... analyzing genetics, environmental, and lifestyle factors to accurately ... the University of Southern California (USC), the Interventional ... and Proove publish results showing that Proove Opioid ...
Breaking Biology Technology: