Navigation Links
Scientists aim to thwart use of flu as bioweapon

Flu is already a big killer, responsible for more than 35,000 deaths in the United States alone each year. And wild birds infected with the deadly H5N1 strain of bird flu are gradually broadening the scope of that disease. This week in Rochester, scientists are discussing ways to better understand the flu and also how to prevent the possibility that terrorists could somehow modify flu as a bioweapon to make it even more lethal than it is already.

Among the highlights of this week's two-day symposium, hosted by the University of Rochester Center for Biodefense Immune Modeling, is a lecture by Nobel Prize winner Peter Doherty, Ph.D., an expert on how flu spurs the immune system to defend itself against the infection. Doherty's technical talk on the roles of specific types of T-cells in influenza will be at 1:30 p.m. Friday, June 23, at the Rochester Marriott Airport Hotel on West Ridge Road. The lecture is free and open to the public.

During the symposium Thursday and Friday, University of Rochester experts in mathematics, statistics, immunology, and infectious diseases will join with colleagues from around the nation to discuss exactly how flu invades the body, how the body responds, and how mathematicians, statisticians, and computer scientists are working to help understand the pathogenesis of flu infection. The group will also talk about the potential of flu to be intentionally modified for use as a lethal weapon more deadly than bird flu, and ways to prevent that from happening.

"Flu viruses are deadly ?witness the 1918 Spanish flu which killed millions of people ?and with modification, they can be made even more deadly," said Hulin Wu, Ph.D., professor in the Department of Biostatistics and Computational Biology and director of the modeling center. Wu's colleague, Martin Zand, M.D., Ph.D., co-director of the center, added that "We don't know whether flu will be weaponized; it's crucial to ask the question and to be prepared."

The f ocus of Wu's center, funded by the National Institutes of Health, is the mathematical modeling of infectious diseases. When the flu virus infects the body, for instance, a cascade of complex events occur to fight the virus as it commandeers cells and begins churning out viral particles that attack the body. The immune system falls back on an array of cells, especially antibody-producing B-cells and flu-killing T cells, to fight back. Understanding just how that occurs, and simulating that with computers, is the goal of the center.

Wu points to the improved treatment of HIV as an area where such an approach has already yielded enormous benefit to patients. Once considered a death sentence, HIV infection is now more commonly viewed as a chronic infection thanks largely to improved treatment. Much of the improvement is due to early mathematical models that helped scientists and physicians understand and target the disease more effectively.

"How flu infects the body and how the body responds to a flu infection is not understood completely," said Wu. "Mathematical models will help guide flu experts to ask the right questions, so that we understand it more thoroughly than we do today. Understanding exactly what is happening should help scientists evaluate how the virus will respond to drugs designed to treat an infection."

Since flu is already a killer, the discussions will have an immediate application among scientists looking for ways to stop or better treat "natural" flu. The work also helps scientists like John Treanor, M.D., and David Topham, Ph.D., who are designing and testing new vaccines designed to prevent all types of flu, including bird flu. The University is recognized internationally as a leader in the testing of bird-flu vaccines.

"For many years people did not recognize the importance of flu research," said Topham, associate professor of Microbiology and Immunology and a scientist in the David H. Smith Center for Vaccine Bio logy and Immunology. "Flu research was seen as humdrum and routine, and there was no driving force to do that research. It just sort of blended into the background. People assumed that since there is a vaccine, it wasn't a disease of interest any more.

"But with bird flu on the horizon and the vaccine shortages that have occurred in recent years, it's become a hotbed of research interest. Besides, flu is responsible for 35,000 deaths and 200,000 hospitalizations in the United States alone. It's a serious health problem," Topham added.


'"/>

Source:University of Rochester Medical Center


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Scientists Replicate Hepatitis C Virus in Laboratory
3. Scientists detect probable genetic cause of some Parkinsons disease cases
4. Scientists find missing enzyme for tuberculosis iron scavenging pathway
5. Scientists seek answers on what activates deadly anthrax spores
6. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
7. Scientists collaborate to assess health of global environment
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. Scientists discover the cellular roots of graying hair
10. Scientists rid stem cell culture of key animal cells
11. Scientists develop new color-coded test for protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/6/2017)... , April 6, 2017 Forecasts ... ANPR, Document Readers, by End-Use (Transportation & Logistics, Government ... Oil, Gas & Fossil Generation Facility, Nuclear Power), Industrial, ... Other) Are you looking for a definitive ... ...
(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer ... first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With ... with the challenge of how to continue to feed a growing nation. At the ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... for microscopy and surface analysis, Nanoscience Instruments is now expanding into Analytical ... broad range of contract analysis services for advanced applications. Services will leverage ...
(Date:10/6/2017)... (PRWEB) , ... October 06, 2017 , ... ... host a lunch discussion and webinar on INSIGhT, the first-ever adaptive clinical trial ... Investigator, Dana-Farber Cancer Institute. The event is free and open to the public, ...
Breaking Biology Technology: