Navigation Links
Schepens scientists are first to discover angiogenesis switch inside blood vessel cells

Scientists at Schepens Eye Research Institute, an affiliate of Harvard Medical School, are the first to discover a switch inside blood vessel cells that controls angiogenesis (new blood vessel growth). The switch, they learned, is turned on and off by the balance between two enzymes (known as PI3K and PLCg) that compete for the use of the same lipid membrane to fulfill opposite missions, growth and regression, respectively. This finding could lead to new, more targeted drugs for diseases such as cancer, diabetic retinopathy and macular degeneration. The study, titled "Regulating angiogenesis at the level of PtdIns-4,5P2," is published in the current issue of The EMBO Journal (May 17).

"This is a significant discovery that holds great promise for future treatments," says principal investigator and senior Schepens scientist, Dr. Andrius Kazlauskas, who adds that scientists have long suspected an "intracellular" switching process, but until now have known very little about it. "Current drugs focus on suppressing angiogenesis by inhibiting a mechanism outside the vessel cells, which involves the action of growth factors such as VEGF or vascular endothelial growth factor. While effective in preventing vessel growth, these drugs have little impact on existing, stable vessels," he says. "Our discovery may help design drugs that could dismantle existing vessels by targeting this switch inside the vessel cells."

Angiogenesis is an important natural process that can be both good and bad for the body. It restores blood flow after injury, prepares a woman's body for pregnancy and increases circulation in a damaged heart. But, it can also nourish cancer tumors and damage delicate retinal tissues when uncontrolled.

The angiogenic process is triggered by what the body perceives as a need for additional blood flow. In the case of disease, it is a mistaken need. In response, the body sends growth factors (such as VEGF) to blood vessels in the "needy area" to bind to receptors on the surface of the endothelial cells. This binding then sets off a series of signaling activities carried out by enzymes within the cells. Two of those enzymes are PI3K and PLCg, which then search for their favorite lipid to use in their respective missions. Until the present study, scientists did not know exactly what those missions were and how they were accomplished.

Kazlauskas and his team were determined to answer those questions. To do so they created laboratory conditions that would allow them to observe the two enzymes separately as they acted on the lipid. In a series of "in vitro" or laboratory experiments that controlled the presence of each enzyme, they began to understand the individual roles of those enzymes.

The research team discovered the following. When the PI3K enzyme acts on the lipid, it converts it (the lipid) into a modified form of itself, which then signals blood vessel cells to proliferate or grow. The team also found that when PLCg acts on the lipid, it cuts the lipid in two, thus preventing PI3K from using that very same lipid to promote vessel growth. Instead, they learned, the resulting two halves of the lipid trigger a series of signaling activities that caused vessels to regress and disappear.

The team concluded that it was the competitive relationship between these two enzymes for the lipid that was at least part of the intracellular switch for which they and other scientists have been searching. They also concluded that blood vessel growth or regression was dependent on the relative activity of the two enzymes and on the amount of the lipid within the endothelial cells.

"Understanding this process opens a whole new avenue for treatment of angiogenesis-related diseases," says Kazlauskas. "For instance, drugs could be designed to decrease PI3K in cancer patients or those with proliferative diabetic retinopathy or macular degeneration, or designed to increased it in a d amaged heart," he says.

Next steps for the research team include identifying the signaling events by which PLCg informs the vessels to undergo regression and the molecules that execute the regression command.


'"/>

Source:Harvard Medical School


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/24/2016)... Nov. 23, 2016 Cercacor today introduced Ember ... their trainers non-invasively measure hemoglobin, Oxygen Content, ... and Respiration Rate in approximately 30 seconds. Smaller than ... and immediate access to key data about their bodies ... training regimen. Hemoglobin carries oxygen to ...
(Date:11/19/2016)... , Nov. 18, 2016 Securus Technologies, ... solutions for public safety, investigation, corrections and monitoring, announced ... smaller competitor, ICSolutions, to have an independent technology judge ... the most modern high tech/sophisticated telephone calling platform, and ... customers that they do most of what we do ...
(Date:11/15/2016)... 2016  Synthetic Biologics, Inc. (NYSE MKT: SYN), ... the gut microbiome, today announced the pricing of ... its common stock and warrants to purchase 50,000,000 ... to the public of $1.00 per share and ... the offering, excluding the proceeds, if any from ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , Dec. 8, 2016 Savannah ... remediation technologies and selected NewTechBio,s NT-MAX Lake ... microbial based beneficial bacteria, in conjunction with Hexa ... correct deficiencies with National Pollutant Discharge Elimination System ... has experienced a steady history of elevated pH ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selectorâ„¢ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
(Date:12/7/2016)... ... December 07, 2016 , ... Huffman Engineering, Inc. , ... Wonderware Certified System Integrator Partner. Huffman Engineering is the only Nebraska-based company ... System Integrator Partner certification gives customers confidence that our engineers are fully trained ...
(Date:12/7/2016)... , Dec. 7, 2016 /PRNewswire/ - Zenith Capital Corp. ("Zenith" ... that will be presented at the Company,s Annual and Special ... of Shareholders will take place on Thursday, December 15, 2016 ... Glenn Hall (Room EC1040), 4825 Mount Royal Gate SW, ... (MST). A notice of meeting and management information circular, containing ...
Breaking Biology Technology: