Navigation Links
Sandia researchers discover way to see how a drug attaches to a cell

Sandia National Laboratories researchers John Shelnutt and Yujiang Song have discovered a better way to see where a drug attaches to a cell through a new process that produces novel hollow platinum nanostructures.

The research will appear as a paper in an upcoming issue of the German chemical journal Angewandte Chemie Int. Ed. In advance of publication, it is featured as a short "hot paper" on the journal's web site.

Sandia is a National Nuclear Security Administration laboratory.

In their paper Shelnutt and Song describe a new way of producing porous, nanoscopic, hollow platinum spheres by using liposomes as blueprints. (Liposomes are microscopic, fluid-filled pouches that are used to deliver certain vaccines, enzymes, or drugs to the body.)

In earlier work, Shelnutt's group grew large continuous nanosheets of platinum on liposome templates, forming foam-like platinum nanostructures. This method provided no way to control shape and size.

The new method reported in the paper uses a different technique to produce porous platinum nanocages with diameters up to 200 nm. Instead of large sheets, they consist of many small flat-branched platinum structures - called dendrites - which join together in a network or cage in the shape of the spherical liposome.

The liposome that Shelnutt and his team used as a blueprint consists of a double layer of lipid (detergent) molecules. The liposomes are placed in a solution containing a platinum salt. When these liposomes are irradiated with light, photocatalysts located in the narrow space between the two layers of the lipid transfer electrons to the platinum ions. The uncharged platinum atoms gather into tiny metal clumps. Once they reach a certain size, they also become active and catalyze the dendrite growth by adding more platinum atoms from the platinum salt.

Little by little, small, flat, platinum dendrites form within the double lipid layer.

"The important t hing is to make sure that the number of photocatalyst molecules - and thus the number of platinum clumps - within the liposome double layer is very high," Shelnutt says. "The resulting dendrites are then close enough to join and take the shape of the liposome.

When the liposomes are broken up, the platinum spheres remain intact.

The thickness of the platinum shell around the sphere can be controlled by reducing or increasing the amount of the platinum salt placed into the solution.

Shelnutt sees many potential applications for this process, including "nanotagging" biological structures such as drug molecules.

"This would involve labeling the drug by attaching a porphyrin molecule and, after allowing the drug to bind to a cell, using light to grow a nanometer-sized particle. The nanoparticles can then be imaged with electron microscopy to reveal the location of the drug receptor molecules on the cell," Shelnutt says. "This type of nanotagging technique might be used in non-biological applications as well - such as finding flaws in semiconductor surfaces."


'"/>

Source:DOE/Sandia National Laboratories


Related biology news :

1. Sandia completes depleted uranium study
2. Sandia work launched on space shuttle shows live cells influence growth of nanostructures
3. Sandia research to focus on early detection of harmful algal blooms
4. Sandia researchers take new approach to studying how cells respond to pathogens
5. NYU researchers simulate molecular biological clock
6. Vital step in cellular migration described by UCSD medical researchers
7. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
8. UCSD researchers maintain stem cells without contaminated animal feeder layers
9. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
10. New protein discovered by Hebrew University researchers
11. First real-time view of developing neurons reveals surprises, say Stanford researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
(Date:4/19/2016)... -- The new GEZE SecuLogic access control ... system solution for all door components. It can be ... interface with integration authorization management system, and thus fulfills ... dimensions of the access control and the optimum integration ... considerable freedom of design with regard to the doors. ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... Italy (PRWEB) , ... April 30, 2016 , ... The ... extraordinary textile design, the bioLogic team explored how bacterial properties can be applied to ... of using Natto bacteria, which move in response to humidity change. The team harvested ...
(Date:4/29/2016)... ... April 29, 2016 , ... Amendia, Inc., a ... procedures, today announced the completion of a significant transaction and partnership that positions ... customers and partners. Kohlberg & Company, L.L.C. (“Kohlberg”), a leading private equity ...
(Date:4/29/2016)... ... 29, 2016 , ... During a two day program for ... company, CereScan’s CEO, John Kelley, joined other Denver business leaders in providing business ... the Denver area business community, shared his top fundamental learnings in building an ...
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced today that the ... for sale in the United States. These components expand the capabilities of the ... one-level sales beginning in October of 2015, the company has seen significant sales growth ...
Breaking Biology Technology: