Navigation Links
Sandia researchers discover way to see how a drug attaches to a cell

Sandia National Laboratories researchers John Shelnutt and Yujiang Song have discovered a better way to see where a drug attaches to a cell through a new process that produces novel hollow platinum nanostructures.

The research will appear as a paper in an upcoming issue of the German chemical journal Angewandte Chemie Int. Ed. In advance of publication, it is featured as a short "hot paper" on the journal's web site.

Sandia is a National Nuclear Security Administration laboratory.

In their paper Shelnutt and Song describe a new way of producing porous, nanoscopic, hollow platinum spheres by using liposomes as blueprints. (Liposomes are microscopic, fluid-filled pouches that are used to deliver certain vaccines, enzymes, or drugs to the body.)

In earlier work, Shelnutt's group grew large continuous nanosheets of platinum on liposome templates, forming foam-like platinum nanostructures. This method provided no way to control shape and size.

The new method reported in the paper uses a different technique to produce porous platinum nanocages with diameters up to 200 nm. Instead of large sheets, they consist of many small flat-branched platinum structures - called dendrites - which join together in a network or cage in the shape of the spherical liposome.

The liposome that Shelnutt and his team used as a blueprint consists of a double layer of lipid (detergent) molecules. The liposomes are placed in a solution containing a platinum salt. When these liposomes are irradiated with light, photocatalysts located in the narrow space between the two layers of the lipid transfer electrons to the platinum ions. The uncharged platinum atoms gather into tiny metal clumps. Once they reach a certain size, they also become active and catalyze the dendrite growth by adding more platinum atoms from the platinum salt.

Little by little, small, flat, platinum dendrites form within the double lipid layer.

"The important t hing is to make sure that the number of photocatalyst molecules - and thus the number of platinum clumps - within the liposome double layer is very high," Shelnutt says. "The resulting dendrites are then close enough to join and take the shape of the liposome.

When the liposomes are broken up, the platinum spheres remain intact.

The thickness of the platinum shell around the sphere can be controlled by reducing or increasing the amount of the platinum salt placed into the solution.

Shelnutt sees many potential applications for this process, including "nanotagging" biological structures such as drug molecules.

"This would involve labeling the drug by attaching a porphyrin molecule and, after allowing the drug to bind to a cell, using light to grow a nanometer-sized particle. The nanoparticles can then be imaged with electron microscopy to reveal the location of the drug receptor molecules on the cell," Shelnutt says. "This type of nanotagging technique might be used in non-biological applications as well - such as finding flaws in semiconductor surfaces."


'"/>

Source:DOE/Sandia National Laboratories


Related biology news :

1. Sandia completes depleted uranium study
2. Sandia work launched on space shuttle shows live cells influence growth of nanostructures
3. Sandia research to focus on early detection of harmful algal blooms
4. Sandia researchers take new approach to studying how cells respond to pathogens
5. NYU researchers simulate molecular biological clock
6. Vital step in cellular migration described by UCSD medical researchers
7. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
8. UCSD researchers maintain stem cells without contaminated animal feeder layers
9. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
10. New protein discovered by Hebrew University researchers
11. First real-time view of developing neurons reveals surprises, say Stanford researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
(Date:6/23/2016)... , June 23, 2016 On Wednesday, ... at 4,833.32, down 0.22%; the Dow Jones Industrial Average edged ... closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on ... ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals ... (NASDAQ: BIND ). Learn more about these stocks ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining centers ... The result of a collaboration among several companies with expertise in toolholding, cutting ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: