Navigation Links
Salk researchers make fast strides towards understanding how our body controls walking

Researchers at the Salk Institute for Biological Studies have identified an important circuit in the spinal cord that controls the speed with which our leg muscles contract and relax. Their findings mark an important milestone in understanding the neural circuitry that coordinates walking movements - one of the main obstacles in developing new treatments for spinal cord injuries.

"Knowing which circuits are important and understanding how they control the essential aspects of walking should put us in a better position to design treatments or implants that restore or activate these pathways," said Martyn D. Goulding, Ph.D., a professor in the Molecular Neurobiology Laboratory.

The Salk research team ?led by Goulding?published their findings in the March 9, 2006 issue of the journal Nature. Joint lead authors were Simon Gosgnach, Ph.D. and Guillermo M. Lanuza, Ph.D. in Goulding's laboratory.

Whether fish or fowl, the muscle contractions that allow us to move generally have certain rhythmic properties. It has been known for some time that a central pattern generator (CPG) ?specialized groups of neurons in the spinal cord ?functions as the control and command center for these rhythmic movements. As such, the CPG lies at the heart of all locomotion. Remarkably, this circuitry functions without any input from the brain, which explains why headless chickens run away from the butcher's block.

"Although people have known about the CPG for a long time, they haven't been able to identify the nerve cells that are part of these circuits. Even at closer inspection, the spinal cord is just a jumbled mass of hundreds of thousands of neurons that all look the same," said Gosgnach.

The Salk team used genetic approaches to identify a subset of neurons, named V1 neurons, as being part of the CPG, and gene targeting methods to selectively disable them in order to observe what happens. "It allowed us to peer into this black box that is the centra l pattern generator," explained Lanuza.

V1 neurons are so-called interneurons that relay electrical signals between nerve cells in the spinal cord,and motor neurons, the nerve cells that cause muscles to contract.

To explore whether V1 neurons actually contribute to the CPG, Goulding and his colleagues performed electrophysical studies on isolated spinal cords. They found that, while normal spinal cords showed a standard pattern of activity that mimics walking, the rhythmic pattern in spinals cords lacking functional V1 neurons had slowed to a crawl.

"From what we knew about these cells, we were a bit puzzled at first because we had expected to see a loss of coordination," said Goulding. "But after delving into the circuitry further, it made perfect sense. Once excited, motor neurons tend to stay "on" for long periods of time and need to be actively turned off. That is exactly what V1 neurons are doing," explained Goulding. In order to initiate the next step, each burst of motor neuron activity needs to be switched off. Switching off motor neurons more quickly, speeds up the stepping movements, allowing animals to walk, run, or swim faster.


Source:Salk Institute

Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:

(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( ) will also ... by the use of DNA technology to an industry ...
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/21/2016)... Unique technology combines v ... security   Xura, Inc. ... digital communications services, today announced it is working alongside ... customers, particularly those in the Financial Services Sector, the ... within a mobile app, alongside, and in combination with, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... , June 24, 2016  Regular discussions on a ... take place between the two entities said Poloz. ... Ottawa , he pointed to the country,s ... the federal government. ... said, "Both institutions have common economic goals, why not sit ...
(Date:6/24/2016)... NY (PRWEB) , ... June 24, 2016 , ... While ... machines such as the Cary 5000 and the 6000i models are higher end machines ... is the height of the spectrophotometer’s light beam from the bottom of the cuvette ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
Breaking Biology Technology: