Navigation Links
Salk researchers make fast strides towards understanding how our body controls walking

Researchers at the Salk Institute for Biological Studies have identified an important circuit in the spinal cord that controls the speed with which our leg muscles contract and relax. Their findings mark an important milestone in understanding the neural circuitry that coordinates walking movements - one of the main obstacles in developing new treatments for spinal cord injuries.

"Knowing which circuits are important and understanding how they control the essential aspects of walking should put us in a better position to design treatments or implants that restore or activate these pathways," said Martyn D. Goulding, Ph.D., a professor in the Molecular Neurobiology Laboratory.

The Salk research team ?led by Goulding?published their findings in the March 9, 2006 issue of the journal Nature. Joint lead authors were Simon Gosgnach, Ph.D. and Guillermo M. Lanuza, Ph.D. in Goulding's laboratory.

Whether fish or fowl, the muscle contractions that allow us to move generally have certain rhythmic properties. It has been known for some time that a central pattern generator (CPG) ?specialized groups of neurons in the spinal cord ?functions as the control and command center for these rhythmic movements. As such, the CPG lies at the heart of all locomotion. Remarkably, this circuitry functions without any input from the brain, which explains why headless chickens run away from the butcher's block.

"Although people have known about the CPG for a long time, they haven't been able to identify the nerve cells that are part of these circuits. Even at closer inspection, the spinal cord is just a jumbled mass of hundreds of thousands of neurons that all look the same," said Gosgnach.

The Salk team used genetic approaches to identify a subset of neurons, named V1 neurons, as being part of the CPG, and gene targeting methods to selectively disable them in order to observe what happens. "It allowed us to peer into this black box that is the centra l pattern generator," explained Lanuza.

V1 neurons are so-called interneurons that relay electrical signals between nerve cells in the spinal cord,and motor neurons, the nerve cells that cause muscles to contract.

To explore whether V1 neurons actually contribute to the CPG, Goulding and his colleagues performed electrophysical studies on isolated spinal cords. They found that, while normal spinal cords showed a standard pattern of activity that mimics walking, the rhythmic pattern in spinals cords lacking functional V1 neurons had slowed to a crawl.

"From what we knew about these cells, we were a bit puzzled at first because we had expected to see a loss of coordination," said Goulding. "But after delving into the circuitry further, it made perfect sense. Once excited, motor neurons tend to stay "on" for long periods of time and need to be actively turned off. That is exactly what V1 neurons are doing," explained Goulding. In order to initiate the next step, each burst of motor neuron activity needs to be switched off. Switching off motor neurons more quickly, speeds up the stepping movements, allowing animals to walk, run, or swim faster.


Source:Salk Institute

Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:

(Date:11/9/2015)... Nov. 09, 2015 ... of the "Global Law Enforcement Biometrics ... --> ) has announced ... Enforcement Biometrics Market 2015-2019" report to ... Markets ( ) has announced the ...
(Date:10/29/2015)... Minn. , Oct. 29, 2015   MedNet ... supports the entire spectrum of clinical research, is pleased ... Minnesota High Tech Association (MHTA) as one of only ... in the "Software – Small and Growing" category. The Tekne ... individuals who have shown superior technology innovation and leadership. ...
(Date:10/29/2015)... 29, 2015  Connected health pioneer, Joseph C. ... of technology-enabled health and wellness, and the business opportunities ... The Internet of Healthy Things . Long ... even existed, Dr. Kvedar, vice president, Connected Health, Partners ... delivery, moving care from the hospital or doctor,s office ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... CA (PRWEB) , ... November 25, 2015 , ... ... genomics company uBiome, were featured on AngelList early in their initial angel funding ... an AngelList syndicate for individuals looking to make early stage investments in the ...
(Date:11/24/2015)... SUNNYVALE, Calif. , Nov. 24, 2015 ... executives will be speaking at the following conference, and ... New York, NY      Tuesday, December 1, ... New York, NY      Tuesday, December 1, ...      Piper Jaffray Healthcare Conference, New York, NY ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... But unless it is bound to proteins, copper is also toxic to cells. ... at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in ...
(Date:11/24/2015)... Global, Inc., a worldwide provider of clinical research services headquartered in ... company has set a new quarterly earnings record in Q3 of ... for Q3 of 2014 to Q3 of 2015.   ... with the establishment of an Asia-Pacific office ... Kingdom and Mexico , with the ...
Breaking Biology Technology: