Navigation Links
Robotic exoskeleton replaces muscle work

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

The ankle exoskeleton developed at U-M was worn by healthy subjects to measure how the device affected ankle function. The U-M team has no plans to build a commercial exoskeleton, but their results suggest promising applications for rehabilitation and physical therapy, and a similar approach could be used by other groups who do build such technology.

"This could benefit stroke patients or patients with incomplete injuries of the spinal cord," said Daniel Ferris, associate professor in movement science at U-M. "For patients that can walk slowly, a brace like this may help them walk faster and more effectively."

Ferris and former U-M doctoral student Keith Gordon, who is now a post-doctoral fellow at the Rehabilitation Institute of Chicago, showed that the wearer of the U-M ankle exoskeleton could learn how to walk with the exoskeleton in about 30 minutes. Additionally, the wearer's nervous system retained the ability to control the exoskeleton three days later.

Electrical signals sent by the brain to our muscles tell them how to move. In people with spinal injuries or some neurological disorders, those electrical signals don't arrive full strength and are uncoordinated. In addition, patients are less able to keep track of exactly where and how their muscles move, which makes re-learning movement difficult.

Typically, robotic rehabilitative devices are worn by patients so that the limb is moved by the brace, which receives its instructions from a computer. Such devices use repetition to help force a movement pattern.

The U-M robotic exoskeleton works the opposite of these rehabilitation aids. In the U-M device, electrodes were attached to the wearer's leg and those electrical signals rece ived from the brain were translated into movement by the exoskeleton.

"The (artificial) muscles are pneumatic. When the computer gets the electrical signal from the (wearer's) muscle, it increases the air pressure into the artificial muscle on the brace," Ferris said. "Essentially the artificial muscle contracts with the person's muscle."

Initially the wearer's gait was disrupted because the mechanical power added by the exoskeleton made the muscle stronger. However, in a relatively short time, the wearers adapted to the new strength and used their muscles less because the exoskeleton was doing more of the work. Their gait normalized after about 30 minutes.

The next step is to test the device on patients with impaired muscle function, Ferris said.
'"/>

Source:University of Michigan


Related biology news :

1. Penn Researchers Use Robotic Surgery
2. Penn Surgeons Use Completely Robotic Surgery to Successfully Treat Prostate Cancer
3. Robotic joystick reveals how brain controls movement
4. Robotic whiskers can sense three-dimensional environment
5. Robotic therapy helps restore hand use after stroke
6. Heart repair gets new muscle
7. Small worm yields big clue on muscle receptor action
8. New complete muscle grown in the lab
9. Spiders help scientists discover how muscles relax
10. Cant serve an ace? Could be muscle fatigue
11. Lance Armstrong through a physiological lens: hard training boosts muscle power 8%

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: