Navigation Links
Ritalin packs punch by elevating norepinephrine, suppressing nerve signal transmissions

Methylphenidate (Ritalin) elevates norepinephrine levels in the brains of rats to help focus attention while suppressing nerve signal transmissions in the sensory pathways to make it easier to block out extraneous stimuli, a Philadelphia research team has found.

Their report in the Journal of Neurophysiology helps explain how a stimulant aids people with attention deficit and hyperactivity disorders to improve their focus without increasing their motor activity. Methylphenidate, prescribed under the brand name Ritalin, has been used for more than 20 years, mostly in children, to treat attention deficit hyperactivity disorder (ADHD) and attention deficit disorder (ADD). The drug can also help people who don't suffer either disorder to attend better to a cognitive task.

Despite its wide use, little is known about how the drug, a chemical cousin of amphetamines, produces its therapeutic effects. Researchers want to unlock the mystery of why the drug has the paradoxical effect of decreasing hyperactive behavior and increasing the ability to focus, even though it is a stimulant, said Barry Waterhouse, the study's senior author.

"We're developing a series of behavioral and electrophysiological assays for examining the actions of drugs like methylphenidate," Waterhouse said. "If we can show exactly how methylphenidate works, we may be able to produce even more effective drugs and provide a better understanding of the physiology underlying ADHD."

The study, using rats, is the first to document the increase in norepinephrine and suppression of the neuronal response in this sensory pathway of the brain. "Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats," by Philadelphia-based researchers Candice Drouin, University of Pennsylvania; Michelle Page, Thomas Jefferson University; and Barry Waterhouse, Drexel University College of Medicine appe ars online in the Journal of Neurophysiology, published by The American Physiological Society.

From whiskers to brain

The researchers stimulated rats' whiskers while recording the activity of the neurons in the sensory pathways that convey this sensation from the whiskers to the cerebral cortex. They compared the rat's sensory pathway response to the whisker stimulation when receiving two different doses of methylphenidate. They found that both the low and moderate doses of methylphenidate:

  • Elevated norepinephrine in the area of the brain that processes information related to whisker movement. Norepinephrine helps transmit sensory information from the periphery to the brain.
  • Suppressed the long latency phase of the brain's neuronal response to whisker-related sensory stimuli. Suppression of the sensory neuronal response in this way is believed to help filter extraneous stimuli, Waterhouse explained. With the extraneous stimuli out of the way, the individual is better able to attend to the important stimuli.

In addition, the researchers found that the higher dose caused the rats to increase motor activity, while the lower dose did not.

Scientists still have much to learn about methylphenidate, which has an impact on neural circuits throughout the entire brain, not just the sensory pathway studied in this paper, Waterhouse noted. The changes that occur in this sensory pathway may affect other areas of the brain and changes in other areas of the brain may affect this pathway. In addition to sensory pathways, other scientists are studying how the drug affects cognitive and emotional areas of brain.

Next steps

"This experiment adds to our knowledge of what the drug is doing at the cellular level and gives us a springboard to other studies," Waterhouse said. "One question now is, how does the individual's perception of what is an important stimulus factor into the equation?"

Researchers in this area keep in touch and share their results, Waterhouse said. One group, for example, is looking at the drug's effects on dopamine and norepinephrine in the prefrontal cortex, he noted. These results will eventually have to be combined, as changes in one area of the brain are likely to affect other areas.

"We've been thinking about this for a long time," Waterhouse said of his research. "We hope to have a good idea of the drug's action when we put it all together."

One broad question that intrigues researchers is whether ADHD traces back to the same area of the brain as attention deficit disorder, a similar condition but one in which hyperactivity isn't a symptom.

They also want to know whether Ritalin has any toxic or long-lasting effects, not only for ADHD patients, but also for individuals taking the drug who do not suffer from ADHD or ADD. Methylphenidate use is on the rise among college students who solicit prescriptions from friends or siblings diagnosed with ADHD and use the drug to postpone fatigue and stay alert and focused while studying for exams or completing projects, Waterhouse said.


'"/>

Source:American Physiological Society


Related biology news :

1. Nano-particles effective in killing cancer with one-two punch of chemotherapeutics
2. Minuscule molecules pack a powerful punch
3. Statin plus cancer drug deliver combo punch to brain cancer cells
4. Dealing deadly cancers a knockout punch
5. Gene elevating breast cancer risk also causes prostate cancer
6. Wisconsin scientists grow critical nerve cells
7. Clam embryo study shows pollutant mixture adversely affects nerve cell development
8. Zebrafish may hold key to understanding human nerve cell development
9. New component of the brakes on nerve regeneration found
10. Cerebral navigation: How do nerve fibers know what direction to grow in?
11. Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/9/2016)... an innovation leader in attendance control systems is proud to announce the introduction of ... make sure the right employees are actually signing in, and to even control the ... ... ... ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)... June, 23, 2016  The Biodesign Challenge (BDC), a ... ways to harness living systems and biotechnology, announced its ... in New York City . ... students, showcased projects at MoMA,s Celeste Bartos Theater during ... , MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published today ... a patient who developed lymphedema after being treated for breast cancer benefitted from an ... paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... June 23, 2016 On Wednesday, June ... 4,833.32, down 0.22%; the Dow Jones Industrial Average edged 0.27% ... at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the ... Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. ... BIND ). Learn more about these stocks by ...
Breaking Biology Technology: