Navigation Links
Rice scientists unveil 'nanoegg'

Researchers at Rice University's Laboratory for Nanophotonics (LANP) have unveiled the "nanoegg," the latest addition to their family ultrasmall, light-focusing particles. A cousin of the versatile nanoshell, nanoeggs are asymmetric specks of matter whose striking optical properties can be harnessed for molecular imaging, medical diagnostics, chemical sensing and more.

Nanoeggs are described in the July 18 issue of the Proceedings of the National Academy of Sciences.

Like nanoshells, nanoeggs are about 20 times smaller than a red blood cell, and they can be tuned to focus light on small regions of space. But each nanoegg interacts with more light ?about five times the number of wavelengths ?than their nanoshell cousins, and their asymmetric structure also allows them to focus more energy on a particular spot.

"The field of nanophotonics is undergoing explosive growth, as researchers gain greater and greater sophistication in the design and manipulation of light-active nanostructures," said LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "The addition of nanoeggs and, earlier this year, nanorice to LANP's family of optical nanoparticles is a direct result of our increased understanding of the interaction between light and matter in this critical size regime."

Like nanoshells, nanoeggs have a spherical, non-conducting core that's covered with a thin metal shell. But where the casing on a nanoshell has a uniform thickness ?like the peel covering an orange ?the nanoegg's covering is thicker on one side than the other ?in much the same way that a hard-boiled egg white is thick in some places and thin in others.

The off-center core in the nanoegg radically changes its electrical properties, said co-author and theoretical physicist Peter Nordlander, professor of physics and astronomy. The reasons for this have to do with the odd and often counterintuitiv e rules that govern how light interacts with electrons at the nanoscale.

"All metal particles have a sea of free electrons flowing continuously over their surface called plasmons," Nordlander said. "These plasmons slosh around constantly, just like waves in the ocean. Light also travels in waves, and when the wavelength of incoming light matches the wavelength of the plasmon, the amplitude of their sloshing gets bigger and bigger, much like the waves in a bathtub when a child rhythmically sloshes bathwater until it spills out of the tub."

In order for plasmons to be excited by light, the electrons on a particle's surface must behave in such a way as to create a 'dipole moment,' a state marked by two equal but opposite poles, one positive and the other negative ?much like a magnet that attracts on one end and repels on the other.

"Without a dipole moment, there is no 'handle' for light to grab hold of," Nordlander said. "In symmetric nanoshells, most of the light energy is lost to these 'dark modes.' With symmetry breaking, we are able to make these dark modes bright by providing dipole moments for more of the incoming light."


Source:Rice University

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:

(Date:6/9/2016)... -- Perkotek an innovation leader in attendance control systems is proud to announce the introduction ... to make sure the right employees are actually signing in, and to even control ... ... ... ...
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
(Date:5/24/2016)... Calif. , May 24, 2016 Ampronix facilitates superior patient care by ... LMD3251MT  3D medical LCD display is the latest premium product recently added to the ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , June 24, 2016  Regular discussions on a range ... place between the two entities said Poloz. Speaking ... Ottawa , he pointed to the country,s inflation ... federal government. "In ... "Both institutions have common economic goals, why not sit down ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, into ... for over 35 years, is proud to add Target to its list of ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm ... Mold) microbial test has received AOAC Research Institute approval 061601. , “This is ... last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking ... Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity as ...
Breaking Biology Technology: