Navigation Links
Revealing the machinery underlying the 'plastic' juvenile brain

Among the central mysteries of neurobiology is what properties of the young brain enable it to so adeptly wire itself to adapt to experience—a quality known as plasticity. The extraordinary plasticity of the young brain occurs only during a narrow window of time known as the critical period. For example, children deprived of normal visual stimulation during an early critical period of the first few years of life suffer the permanent visual impairment of amblyopia.

Now, researchers comparing the genetic machinery of juvenile and adult mouse brains undergoing visual experience have uncovered differences in genetic activity that appear to be central to this plasticity.

Tommaso Pizzorusso and colleagues published their findings in the March 1, 2007 issue of the journal Neuron, published by Cell Press.

In their experiments, after keeping juvenile and adult mice in the dark for three days, the researchers exposed the animals to episodes of normal light and analyzed the response in the genetic machinery of the visual cortex in each animal's brain.

They found that the brains of the juvenile mice showed activation of specific genetic mechanisms that the adult brains did not. Specifically, the researchers found that visual experience in the juvenile brains triggered telltale chemical alterations in substances called histones that were not triggered in the adult brains.

Such histones are protein components of the spools around which DNA winds in chromosomes, and alterations of histones can render the DNA accessible to the machinery that activates genes. The researchers also found that the visual stimulation activated genes known to regulate the transcription of other genes. Transcription is the process of copying DNA genes into RNA, which acts as a blueprint for making proteins.

As a test to determine whether such histone modification functionally affected plasticity, the researchers administered a drug to adult mice th at would increase chemical modification of histone. They found that such adult mice, indeed, showed an increase in a form of visual plasticity.

"Our results show that visual experience differently activates intracellular signaling pathways that control gene expression in the visual cortex of juvenile and adult mice, and that this developmental downregulation could regulate the developmental reduction of plasticity occurring in the adult visual cortex," concluded Pizzorusso and colleagues. They also concluded that the closure of the critical period was associated with a decrease in the ability of visual experience to drive the histone modifications that are necessary for neural rewiring.

The researchers concluded that the mechanism they discovered "might be important for plasticity in the visual cortex during the critical period, and its downregulation could be involved in the closure of the critical period."

They wrote that "Thus, multiple molecular mechanisms acting at different levels—extracellularly, on the cell membrane, and intracellularly—might contribute to the developmental downregulation of plasticity occurring in coincidence with the closure of the critical period."


'"/>

Source:Cell Press


Related biology news :

1. Scientists take aim at virulent bacteria by decoding machinery of key control enzyme
2. Gambling monkeys give insight into neural machinery of risk
3. Clearing jams in copy machinery
4. New insight into machinery of immune cells tentacles
5. Dissecting the machinery of nicotines reward
6. Biologists probe the machinery of cellular protein factories
7. Change in gene may be underlying molecular defect in some colorectal cancers
8. New mechanism underlying pain found
9. Researchers reverse juvenile diabetes in animal model
10. A puzzle piece found in unraveling the wiring of the brain
11. Mapping neuron connections in the brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/22/2016)... June 22, 2016 On Monday, the Department ... industry to share solutions for the Biometric Exit Program. ... and Border Protection (CBP), explains that CBP intends to ... the United States , in order ... defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... DENVER, COLORADO (PRWEB) , ... December 05, 2016 ... ... podcast series hosted by one of the nation’s premier cannabis technology and application ... the founder and CEO of Cultivate Colorado. Over the past 30 years, Chip ...
(Date:12/5/2016)... 2016 /PRNewswire/ - Resverlogix Corp. ("Resverlogix" or the ... and Safety Monitoring Board (DSMB) for the Company,s ... (CVD) patients has completed a second planned safety ... as planned without any modifications. The DSMB reviewed ... or efficacy concerns were identified. The DSMB will ...
(Date:12/5/2016)... , December 5, 2016 The ... with almost $108 billion of revenue and some $890 ... were spent on global biopharmaceuticals, and this figure is ... Stock-Callers.com has lined up these four equities for assessment: ... Pharmaceuticals Inc. (NASDAQ: ACAD ), Acorda Therapeutics ...
(Date:12/4/2016)... CAMBRIDGE, Mass. and CAPE ... SystemOne, a company focused on connecting ... the developing world, and Daktari Diagnostics, a company ... its portable and ultrasensitive immunoassay-based CarePlatform™, today announced ... license agreement to integrate Daktari,s technology platform with ...
Breaking Biology Technology: