Navigation Links
Researchers unravel DNA tangles and enzyme seamstresses

Almost three metres of tightly-coiled DNA strands fit into a cell's nucleus. As DNA replicates, the strands unwind and unfold and then re-package into chromosomes, the genetic blueprints of life ?but what happens if this process becomes entangled?

Untangling the heaps of DNA strings during cell division is the job of special enzymes called topoisomerases. How they achieve this feat may be simpler than previously thought, says U of T research. In a study published in the current online issue of Biophysical Journal, researchers used computer simulations to mimic the DNA mess inside the nucleus with a series of billions of linked and unlinked loops. Their calculations indicated that whether DNA molecules are interlinked is shown by the way they touch each other. Interlinked DNA loops tend to touch in an easily recognizable hook-like way, fitting together perfectly; whereas strands of unlinked DNA molecules tend to curve away when they touch each other. The findings could have implications in designing new drugs to treat cancer and infectious diseases as uncontrolled DNA linking and tangling often result in cell death.

"The exciting part is that these seemingly abstract physical principles we work with can be useful some day to tie up DNA in cancer cells and kill them off," says U of T biochemist Hue Sun Chan, the study's co-author and a Canada Research Chair in proteomics, bioinformatics and functional genomics.The study is co-authored by Professor Lynn Zechiedrich of Baylor College of Medicine in Houston, Texas, who proposed the notion in an earlier conceptual report, and the lead author, Zhirong Liu, is a U of T postdoctoral fellow in Chan's research group. "These are the same general principles that can be applied to other areas of science and engineering to address various entanglement problems," Chan says.

The curved distinctions between DNA strands may allow the seamstresses of the process -- the topoisomerases -- to identify linked DNA lo ops, cut a strand apart, let another strand pass through, and then reconnect the cut strand so that DNA can separate into untangled lengths that are the chromosomes: the topoisomerases only have to cut and reconnect at hooked-like but not other touching points. If this process were disrupted, however, the cell would be in serious trouble. "One link could keep the cell from dividing. Two links are even more lethal," says Zechiedrich, who notes that "the results of these computer simulations are very striking."

While Chan and his collaborators stress their results represent only a quantitative proof of concept, they do see the finding as particularly relevant for understanding diseases such as cancer, where cell multiplication goes haywire. "Besides further elucidating the principles we found, what needs to be done now is to test these findings experimentally and ultimately apply them to real-life cell division and target the developmental processes that lead to disease."


'"/>

Source:University of Toronto


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/31/2016)... 2016  Genomics firm Nabsys has completed a financial ... Bready , M.D., who returned to the company in ... leadership team, including Chief Technology Officer, John Oliver ... Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys from ...
(Date:3/21/2016)... -- Unique technology combines v ...   Xura, Inc. (NASDAQ: ... communications services, today announced it is working alongside SpeechPro ... particularly those in the Financial Services Sector, the ability ... a mobile app, alongside, and in combination with, traditional ...
(Date:3/14/2016)... NXTD ) ("NXT-ID" or the "Company"), ... the airing of a new series of commercials on Time ... 21 st .  The commercials will air on Bloomberg TV, ... the Street show. --> NXTD ) ("NXT-ID" or ... market, announces the airing of a new series of commercials ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... UTAH. (PRWEB) , ... May 25, 2016 , ... WEDI, ... healthcare information exchange, today announced that Charles W. Stellar has been named by the ... interim CEO since January 2016. As an executive leader with more than 35 years ...
(Date:5/24/2016)... La Jolla, CA (PRWEB) , ... May 24, 2016 , ... ... and financial planning for corporate executives and entrepreneurs, held The Future of San Diego ... leaders in the San Diego life science community attended the event with speakers Dr. ...
(Date:5/23/2016)... England , May 23, 2016 ... May 25 th at 10:15 a.m. ET before the ... the role genetically engineered mosquitos can play in controlling the ... carrier of the Zika virus.      (Logo: ... engineered male mosquito with a self-limiting gene. Trials in ...
(Date:5/20/2016)... ... May 20, 2016 , ... The leading Regenerative Veterinary ... most experienced veterinary clients have treated over 100 of their own patients with the ... provide the highest level of care for their patients. , The veterinarians are ...
Breaking Biology Technology: