Navigation Links
Researchers track how spores break out of dormant state

Tapping into the unknown world of awakening dormant bacterial spores, researchers have revealed through atomic force microscopy (AFM) the alterations of spore coat and germ cell wall that accompany the transformation from a spore to a vegetative cell.

When starved of nutrients Bacillus (rod-shaped bacteria) cells initiate a series of genetic, biochemical and structural events that result in the formation of metabolically dormant spores. They can remain dormant for extended periods and, partly because of their tough spore coat, have a significant resistance to extreme environmental factors including heat, radiation and toxic chemicals. However, once in favorable conditions, spores break the dormant state through germination and reenter the vegetative mode of replication.

Although significant progress has been made in understanding the biochemical and genetic bases of the spore germination process, it is still unclear how a spore breaks out of its dormant state.

But a new in vitro study of single germinating Bacillus atrophaeus spores details how the spore coat structures break down, and it shows with unprecedented resolution how the new bacterium emerges from the disintegrating spore. The new research, led by Lawrence Livermore National Laboratory scientists, appears in the May 28-June 1 early online edition of the Proceedings of the National Academy of Sciences. The research appears in this week’s (June 4) issue of PNAS.

“A thorough understanding of spore germination is important for the development of new countermeasures that identify the earliest stages of a wide range of spore mediated diseases, including botulism, gas gangrene and pulmonary anthrax,” said Alexander Malkin, senior author from LLNL’s Biosciences and Biotechnology Division. “But it’s also important to gain fundamental insights into the key events in bacterial cell development.”

The researchers, including Marco Plomp, lead author at LLNL, and those f rom Children’s Hospital Oakland Research Institute and Northwestern University, used AFM to identify disassembly of the outer spore coat rodlet structures, which appear to be structurally similar to amyloid fibrils that have been associated with neural degenerative diseases, such as Alzheimer’s and prion diseases. “The extreme physical and chemical resistance of Bacillus spores suggests that evolutionary forces have captured the mechanical rigidity and resistance of these amyloid self-assembling biomaterials to structure the protective outer spore surface,” Plomp said.

When exposed to a solution that triggers germination, nanometer sized etch pits were seen developing in the rodlet layer. These etch pits evolved into ever widening fissures, leaving narrow strips of remaining rodlet structure. In the end, 1- to 3- nm-wide fibrils remained. The in vitro AFM imaging also revealed the porous fibrous cell wall structure of newly emerging and mature vegetative cells, consisting of a network of nanometer-wide peptidoglycan fibers. “These results show that dynamic AFM is a promising tool to investigate the formation and evolution of the bacterial cell wall,” Malkin said.
'"/>

Source:DOE/Lawrence Livermore National Laboratory


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/22/2016)... PUNE, India , March 22, 2016 ... new market research report "Electronic Sensors Market for ... Fingerprint, Proximity, & Others), Application (Communication & ... and Geography - Global Forecast to 2022", ... consumer industry is expected to reach USD ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network for ... Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is to ... are designed, built and brought to market. , The Design Lab is Supplyframe’s ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
Breaking Biology Technology: