Navigation Links
Researchers track how spores break out of dormant state

Tapping into the unknown world of awakening dormant bacterial spores, researchers have revealed through atomic force microscopy (AFM) the alterations of spore coat and germ cell wall that accompany the transformation from a spore to a vegetative cell.

When starved of nutrients Bacillus (rod-shaped bacteria) cells initiate a series of genetic, biochemical and structural events that result in the formation of metabolically dormant spores. They can remain dormant for extended periods and, partly because of their tough spore coat, have a significant resistance to extreme environmental factors including heat, radiation and toxic chemicals. However, once in favorable conditions, spores break the dormant state through germination and reenter the vegetative mode of replication.

Although significant progress has been made in understanding the biochemical and genetic bases of the spore germination process, it is still unclear how a spore breaks out of its dormant state.

But a new in vitro study of single germinating Bacillus atrophaeus spores details how the spore coat structures break down, and it shows with unprecedented resolution how the new bacterium emerges from the disintegrating spore. The new research, led by Lawrence Livermore National Laboratory scientists, appears in the May 28-June 1 early online edition of the Proceedings of the National Academy of Sciences. The research appears in this week’s (June 4) issue of PNAS.

“A thorough understanding of spore germination is important for the development of new countermeasures that identify the earliest stages of a wide range of spore mediated diseases, including botulism, gas gangrene and pulmonary anthrax,” said Alexander Malkin, senior author from LLNL’s Biosciences and Biotechnology Division. “But it’s also important to gain fundamental insights into the key events in bacterial cell development.”

The researchers, including Marco Plomp, lead author at LLNL, and those f rom Children’s Hospital Oakland Research Institute and Northwestern University, used AFM to identify disassembly of the outer spore coat rodlet structures, which appear to be structurally similar to amyloid fibrils that have been associated with neural degenerative diseases, such as Alzheimer’s and prion diseases. “The extreme physical and chemical resistance of Bacillus spores suggests that evolutionary forces have captured the mechanical rigidity and resistance of these amyloid self-assembling biomaterials to structure the protective outer spore surface,” Plomp said.

When exposed to a solution that triggers germination, nanometer sized etch pits were seen developing in the rodlet layer. These etch pits evolved into ever widening fissures, leaving narrow strips of remaining rodlet structure. In the end, 1- to 3- nm-wide fibrils remained. The in vitro AFM imaging also revealed the porous fibrous cell wall structure of newly emerging and mature vegetative cells, consisting of a network of nanometer-wide peptidoglycan fibers. “These results show that dynamic AFM is a promising tool to investigate the formation and evolution of the bacterial cell wall,” Malkin said.
'"/>

Source:DOE/Lawrence Livermore National Laboratory


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/7/2016)... 7, 2016   Avanade is helping Williams ... teams in history, exploit biometric data in order to ... maintain the competitive edge against their rivals after their ... Avanade has worked with Williams during the 2016 ... data (heart rate, breathing rate, temperature and peak acceleration) ...
(Date:12/6/2016)... Valencell , the leading innovator in performance biometric ... consecutive year of triple digit growth for its PerformTek ... 360 percent increase in companies who have acquired Valencell ... sales of its wrist and ear Benchmark™ sensor systems, ... hearables for fitness and healthcare applications. ...
(Date:12/2/2016)... India , December 1, 2016 ... Authentication type (Fingerprint, Voice), Future Technology (Iris Recognition ... and Region - Global Forecast to 2021", published ... USD 442.7 Million in 2016, and is projected ... at a CAGR of 14.06%.      ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... ... of flexible packaging for their exceptionally efficient human mesenchymal stem/stromal cell (hMSC) ... portfolio of bioprocess media products engineered to radically streamline culture processes, minimize ...
(Date:12/8/2016)... Fla. , Dec. 8, 2016  HedgePath ... company that discovers, develops and plans to commercialize ... its shares of common stock were approved for ... will begin trading on the OTCQX, effective today, ... qualify for the OTCQX market, companies must meet ...
(Date:12/7/2016)... ... December 07, 2016 , ... ... I/II dose escalation and expansion clinical trial for its lead drug candidate, AC0010, ... purpose of the trial was to determine the safety, antitumor activity, and recommended ...
(Date:12/7/2016)... Corp. ("Zenith" or the "Company") announces webcast details for a ... and Special Meeting. The Zenith Annual and ... 15, 2016 at Mount Royal University, ... Gate SW, Calgary, Alberta , commencing at ... circular, containing the matters to be considered at the meeting, ...
Breaking Biology Technology: