Navigation Links
Researchers make surprise discovery that some neurons can transmit three signals at once

Generations of neuroscientists have been indoctrinated into believing that our senses, thoughts, feelings and movements are orchestrated by a communication network of brain cells, or neurons, each responsible for relaying one specific chemical message called a neurotransmitter. Either neurons release a neurotransmitter that excites a neighboring cell, thereby triggering an electrical discharge and enhancing brain activity, or they dispatch a signal that quells a neuron's activity. So, when researchers at the University of Pittsburgh discovered that immature rat brain cells could fire a simultaneous three-punch salvo ?three neurotransmitters bursting out of a single cell -- it was a finding they knew would excite more than just neurons.

Just as surprising, they report in the lead article of this month's Nature Neuroscience, is that by definition these three neurotransmitters are seemingly at odds with each other. One, glutamate, is a textbook excitatory neurotransmitter; while the other two, GABA and glycine, are quintessential inhibitory neurotransmitters.

Information is transmitted between neurons when one cell releases a neurotransmitter at a synapse, the point of contact between cells. When released from a cell, neurotransmitters are sent on a one-way ride that dead ends at the membrane of the adjacent cell. Like lock and key, they bind to specific receptors on the surface of the receiving cell, causing its electrical activity to be enhanced or inhibited.

The first week after birth marks a critical phase in the developing rat brain, a time period comparable to three months gestation in a human, when neurons are meticulously organizing and self-selecting to assemble into specific brain structures and neuronal networks. It has long been known that a specific receptor for glutamate, the NMDA receptor, plays a crucial role in these processes, but how inhibitory synapses, which account for about half of the brain's cellular connections, would ga in access to these receptors has long puzzled researchers. But now, the Pittsburgh researchers believe they have solved some of the mystery. During this crucial period, immature inhibitory synapses also release the excitatory neurotransmitter glutamate, and by mimicking excitatory synapses, can stimulate NMDA receptors.

"It first appeared odd to us that an immature inhibitory synapse would want to release an excitatory neurotransmitter. After all, this contradicts the most basic principles that have defined the field of neuroscience. But when we also found that this glutamate activates NMDA receptors at the most critical stage of brain development and organization, we realized that this could explain a number of fundamental questions," explained Karl Kandler, Ph.D., associate professor of neurobiology at the University of Pittsburgh School of Medicine, and the study's senior author.

"These findings shed new light on how inhibitory synapses evolve and are assembled into functional circuits in the developing brain," he added.

Many brain disorders, like epilepsy, schizophrenia and depression, involve deficits that prevent normal inhibition of cells. Dr. Kandler's research could eventually provide insight into the biological cause of these disorders and help to identify novel approaches for prevention and treatment. Further study could have particular implications for dyslexia and tinnitus ?often referred to as ringing in the ears ?which can be caused by abnormal inhibitory signaling within the auditory system, a region of the brain that is the focus of Dr. Kandler's research.

Before there can be practical clinical applications several questions need to be answered, including how GABA, glycine and glutamate synapses cooperate to activate NMDA receptors. In the traditional sense, when inhibitory synapses are mature, they would never release glutamate, nor would they be able to depolarize a cell, both of which are required for NMDA receptor activation. But, as if by design, during the exact period when the auditory brain is undergoing refinement, the GABA and glycine neurotransmitters can produce depolarizations, a process that normally can only be achieved by excitatory transmitters.

It is not yet known how long the cells retain this unique capacity, for how long the neurons are able to release all three neurotransmitters or what causes the cells to stop releasing glutamate as they mature. But according to the study's first author, Deda C. Gillepsie, Ph.D., a post-doctoral associate working with Dr. Kandler, things become more normalized within three weeks of birth, or about one week after hearing is fully developed. So, perhaps early auditory experience provides the signals that stop the cells from releasing glutamate, which is a prerequisite for correctly processing auditory information.

"It will be interesting to find out whether abnormal hearing, such as partial deafness or hearing dominated by noise, which in humans can affect normal language development, would cause glutamate to still be released. Finding such an association would be intriguing, but for now this remains just an hypothesis that will require much study, Dr. Gillespie said.

The third author of the study is Gunsoo Kim, Ph.D., who is now pursuing post-doctoral studies at the University of California, San Francisco.


Source:University of Pittsburgh Medical Center

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:

(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... driving the explosion of technology-enabled health and wellness, and ... new book, The Internet of Healthy Things ... sensors or smartphones even existed, Dr. Kvedar, vice president, ... of health care delivery, moving care from the hospital ...
(Date:10/27/2015)... , October 27, 2015 ... Automated Semantic Gaze Mapping technology (ASGM) automatically maps data ... Eye Tracking Glasses , so that they can ... --> Munich, Germany , October ... automatically maps data from mobile eye tracking videos created ...
(Date:10/26/2015)... NEWARK, Calif. , Oct. 26, 2015  Delta ... convenient biometric authentication to mobile and PC devices, announced ... Fujitsu,s smartphone, the arrows NX F-02H launched by NTT ... arrows NX F-02H is the second smartphone to include ... this technology in ARROWS NX F-04G in May 2015, ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , ... November 24, 2015 , ... ... healthy metabolism. But unless it is bound to proteins, copper is also toxic ... (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of ...
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
(Date:11/24/2015)... ... 2015 , ... In harsh industrial processes, the safety of ... can represent a weak spot where leaking process media is a possible hazard. ... , which are designed to tolerate extreme process conditions. They combine rugged design ...
Breaking Biology Technology: