Navigation Links
Researchers make long DNA 'wires' for future medical and electronic devices

Ohio State University researchers have invented a process for uncoiling long strands of DNA and forming them into precise patterns.

Ultimately, these DNA strands could act as wires in biologically based electronics and medical devices, said L. James Lee, professor of chemical and biomolecular engineering at Ohio State University.

In the early online edition of the Proceedings of the National Academy of Sciences, Lee and postdoctoral researcher Jingjiao Guan describe how they used a tiny rubber comb to pull DNA strands from drops of water and stamp them onto glass chips.

Other labs have formed very simple structures with DNA, and those are now used in devices for gene testing and medical diagnostics. But Lee and Guan are the first to coax strands of DNA into structures that are at once so orderly and so complex that they resemble stitches on a quilt.

"These are very narrow, very long wires that can be designed into patterns for molecular electronics or biosensors," Lee said. "And in our case, we want to try to build tools for gene delivery, DNA recombination, and maybe even gene repair, down the road."

The longest strands are one millimeter (thousandths of a meter) long, and only one nanometer (billionths of a meter) thick. On a larger scale, positioning such a long, skinny tendril of DNA is like wielding a human hair that is ten meters (30 feet) long. Yet Lee and Guan are able to arrange their DNA strands with nanometer precision, using relatively simple equipment.

In this patent-pending technology, the researchers press the comb into a drop of water containing coils of DNA molecules. Some of the DNA strands fall between the comb's teeth, so that the strands uncoil and stretch out along the surface of the comb as it is pulled from the water.

They then place the comb on a glass chip surface. Depending on how they place the comb, they leave behind strands of different lengths and shapes.

"Basically, we're doing nanotechnology using only a piece of rubber and a tiny droplet of DNA solution," Guan said.

Computer chips that bridge the gap between the electronic and the biological could make detection of certain chemicals easier, and speed disease diagnosis. But first, researchers must develop technologies to mass produce DNA circuits as they produce chip circuits today.

The technique that Lee and Guan used is similar to a relatively inexpensive chip-making technology called soft lithography, where rubber molds press materials into shape.

In this study, they arranged the DNA into rows of "stitches," pinstripes and criss-cross shapes.

The pinstripes presented the researchers with a mystery: for some reason, thorn-like structures emerged along the strands at regular intervals.

"We think the 'thorns' may be used as interconnects between nanowires, or they could connect the nanowires with other electronic components," Guan said. "We are not trying to eliminate them, because we do not think they are defects. We also believe their formation is controllable, because they are almost completely absent in some experiments but abundant in others. Although we currently do not know exactly how the thorns form, maybe new and useful nanostructures may be created if we can better understand and control this process."

The university will license the technology for further development. Lee and Guan are working on their first application ?building the wires into sensors for detecting disease biomarkers. In the meantime, they are collaborating with researchers in the Department of Electrical and Computer Engineering at Ohio State to measure the electrical properties of the DNA wires. They are also using this technique to produce DNA-based nanoparticles for gene delivery.


'"/>

Source:Ohio State University


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/15/2016)... 2016 "Increase in mobile transactions is driving ... biometrics market is expected to grow from USD 4.03 ... at a CAGR of 29.3% between 2016 and 2022. ... growing demand for smart devices, government initiatives, and increasing ... component is expected to grow at a high rate ...
(Date:12/7/2016)... 2016 According to a new market research report "Emotion ... Expression, Voice Recognition), Service, Application Area, End User, And Region - Global Forecast ... USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a ... Reading ... MarketsandMarkets Logo ...
(Date:12/6/2016)...  Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH) (the ... €500.0 million principal amount of its 1.414% senior unsecured notes ... senior unsecured notes due 2026. The closing ... subject to the satisfaction of customary closing conditions.  The notes ... The Company intends to use the net proceeds ...
Breaking Biology News(10 mins):
(Date:1/11/2017)... Washington, USA (PRWEB) , ... January 11, 2017 ... ... SPIE, the international society for optics and photonics , are commending the U.S. ... photonics, following the signing Friday by the President of the American Innovation and ...
(Date:1/11/2017)... Francisco, CA (PRWEB) , ... January 11, 2017 ... ... series of in-kind scientific grants to ground-breaking microbiome studies. Its most recent microbiome ... School of Medicine, who will study the effect of long-term use of oral ...
(Date:1/11/2017)... ... January 11, 2017 , ... Back pain relief technology ... Shots and No Surgery for positive back pain relief for WAR members. , This ... worldwide and could be life changing for millions suffering from chronic back pain. , ...
(Date:1/11/2017)...  GenVec, Inc. (NASDAQ: GNVC ), ... its chief scientific officer, Douglas E. Brough ... for translational development of innovative gene and cell ... Phacilitate Cell & Gene Therapy World 2017 Conference ... Brough,s presentation will highlight the utility of the ...
Breaking Biology Technology: