Navigation Links
Researchers link two more genes to sudden infant death syndrome

Recent discoveries at Mayo Clinic added two more cardiac genes to the list of potential links to sudden infant death syndrome (SIDS), increasing the possibility that genetic defects of the heart may cause up to 15 percent of SIDS cases. This research will be presented Friday at Heart Rhythm 2006, the 27th Annual Scientific Sessions of the Heart Rhythm Society in Boston.

In the two recent separate studies, researchers examined caveolin-3 (CAV3) and the cardiac ryanodine receptor (RyR2) and found molecular and functional evidence in both to implicate them as SIDS-susceptibility genes. Researchers examined the tissue of 135 unrelated cases of SIDS -- in infants with an average age of 3 months old -- that had been referred to Mayo Clinic's Sudden Death Genomics Laboratory for molecular autopsy. In each study, two of the 135 cases possessed mutations in either CAV3 or RyR2.

SIDS -- the sudden, unexplained death of an infant under 1 year old -- is estimated to cause 2,500 infant deaths each year. "Combined with our previous discoveries, we now estimate that defects in genes that provide the blueprints for the critical controllers of the heart's electrical system might have played a key role in more than 300 of those tragedies," says Michael J. Ackerman, M.D., Ph.D., principal investigator of both studies and director of Mayo Clinic's Long QT Syndrome Clinic and Sudden Death Genomics Laboratory. "We are continuing to expose the causes of SIDS. So far, we have now added six genes to the SIDS most-wanted list."

In 2001, a team of investigators led by Dr. Ackerman identified the first cardiac gene, SCN5A, linked to SIDS. In 2005, a comprehensive search of the five channel genes that cause a potentially lethal heart rhythm syndrome known as long QT syndrome (LQTS) was found in 5 percent to 10 percent of SIDS cases.

In collaboration with Baylor College of Medicine, Mayo's sudden death investigators chose to examine CAV3 following our recent dis covery of CAV3 as a novel LQTS-causing gene. RyR2 was targeted because of its involvement in a distinct genetic heart rhythm disease known as catecholaminergic polymorphic ventricular tachycardia (CPVT).

"For a parent whose infant died suddenly and mysteriously even five years ago, we were essentially unable to provide them with a cause and would often have to tell them, 'We have no idea why your apparently healthy infant did not wake up this morning,' " Dr. Ackerman says. "Although so much of SIDS remains unexplained, these findings that point to the heart for 10 percent to 15 percent of SIDS provide one place to search for a possible explanation. For families that have lost an infant to SIDS, it would be reasonable for parents to talk with their physician to make sure there is no family history of other unexplained deaths, unexplained fainting episodes, unexplained seizures that might provide clues and prevent more deaths."

Other researchers involved in the CAV3 study were from the University of Wisconsin-Madison and Baylor College of Medicine, Houston. Researchers involved in the RyR2 study were from Columbia University, New York.


'"/>

Source:Mayo Clinic


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... -- Global demand for enzymes is forecast to grow ... billion.  This market includes enzymes used in industrial ... animal feed, and other markets) and specialty applications ... beverages will remain the largest market for enzymes, ... containing enzymes in developing regions.  These and other ...
(Date:6/27/2016)... 2016  Sequenom, Inc. (NASDAQ: SQNM ), ... through the development of innovative products and services, announced ... United States denied its petition to review ... Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") are not ... the Supreme Court,s Mayo Collaborative Services v. Prometheus Laboratories ...
(Date:6/27/2016)... CA (PRWEB) , ... June 27, 2016 , ... ... for clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT ... care circle with the physician and clinical trial team. , Using the CONSULT module, ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf ... join the faculty of the University of North Carolina Kenan-Flagler Business School ... and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, ...
Breaking Biology Technology: