Navigation Links
Researchers in Montréal and the US create model of key immune-system component

Researchers at Université de Montréal, working with teams at Massachusetts General Hospital and Johns Hopkins University, have made a major breakthrough in understanding an essential aspect of the immune system. For the first time, using a systems biology approach, they have developed a model that facilitates the study of the function of the phagosome. The phagosome is the organelle responsible for the destruction of infectious pathogens that cause such diseases as tuberculosis and salmonellosis, as well as pathogens that could be used in bioterrorism. The results of their study were published this week in the prestigious journal Nature.

Infectious diseases remain one of the main causes of death in the world, and the phenomenon of antibiotic resistant bacteria worsens the situation each year. Thanks to the model developed by teams led by Michel Desjardins of the Department of Pathology and Cellular Biology at Université de Montréal, Drs Lynda Stuart and Alan Ezekowitz at the Massachusetts General Hospital, a Harvard Medical School teaching hospital, and Dr Joel Bader of the Biomedical Engineering Laboratory at Johns Hopkins University, it will now be possible to better understand the complex interactions that govern the functioning of the phagosome.

"We have taken a crucial step here," Prof. Desjardins explains. "We can now reach a better understanding of the molecular processes involved in infections by using a global approach based on proteomics and genomics. This approach will expedite development of therapies and the production of new vaccines. The major investments made in recent years in proteomics research in Québec and Canada have enabled us to pool our resources and apply promising new approaches like systems biology."

As Dr. Stuart explains, "Phagocytes are immune system cells that internalize, kill, and digest bacteria within an intracellular compartment called the phagosome, a major battleground in the host-pathogen conflict. Despite its important role in our normal immune defense, the organization and functioning of the phagosome are poorly understood."

By analyzing a cell line of phagocytes from the Drosophila fruit fly, a common biological model, the researchers identified more than 600 proteins that may be involved with the operation of the phagosome. They then constructed a detailed map of the interactions among these proteins and were able to identify previously unknown regulators of phagocytosis and potential molecular pathways of immune defense.

"Phagocytosis is very similar in many organisms, so we are able to learn about this process by studying it in simpler organisms, such as Drosophila," Dr. Stuart continues. "By combining classic cell biology with the newer approaches of proteomics, functional genomics and computational analysis, we have generated a model of that we believe will facilitate our understanding of infectious diseases and expedite the development of new strategies to fight pathogens."

"It is exciting to see that systems biology has the power to unravel how the phagosome works by revealing the intricately woven roles of all the molecules involved in killing infectious agents," says Joel Bader, Ph.D., Assistant Professor of Biomedical Engineering and a member of the High-Throughput Biology Center at Hopkins.

According to Paul L’Archevêque, President and CEO of Génome Québec, this significant new advance is a further illustration of the tremendous talent of Québec scientists and the precision that can be achieved by genomics and proteomics, two approaches that yield concrete results. "I would like to congratulate Dr. Desjardins and his team. Their very important breakthrough further confirms the wisdom of the Québec government’s decision to invest in innovation, in this case, genomics, an economic priority for the coming years."

Martin Godbout, President and CEO of Genome Canada expressed his satisfaction to see this proteomics research be widely released. "Peers recognition is very important to scientists and I congratulate Dr. Desjardins and his team for this research and its publication in Nature, a prestigious achievement that will benefit all of Canada. It is our mandate to bring Canada to the forefront of genomics and proteomics research."

"The work of Professor Desjardins, his team, and their American colleagues demonstrates the importance of using a combination of innovative techniques," said Dr. Bhagirath Singh, Scientific Director of the CIHR Institute of Infection and Immunity. "Their research findings, applied to the body's ability to get rid of infections, will help develop new treatments and approaches for the prevention of diseases such as tuberculosis."
'"/>

Source:University of Montreal


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... Pa. , April 26, 2017  Genisphere ... delivery platform, has signed a collaborative and sponsored ... Dr. Silvia Muro . The overall goal ... and pharmacodynamics of various 3DNA designs and formulations ... involve targeting diseases of the vasculature as well ...
(Date:4/25/2017)... CA (PRWEB) , ... April 25, 2017 , ... ... of L3 Healthcare, is pleased to announce the company is now a certified ... The iMedNet software certification enables the company’s clinical research team to build, ...
(Date:4/25/2017)... Gatos, California (PRWEB) , ... April 25, 2017 ... ... business, Analytical Services and Metrology Partners.     , Covalent’s Analytical Services unit ... Most samples can be measured within 24 hours of receipt. There are no ...
(Date:4/24/2017)... 2017  Dante Labs announced today the offer of whole ... $900). While American individuals have been able to access WGS ... access WGS below EUR 1,000. The sequencing includes ... information to make informed decisions about disease monitoring, prevention, nutrition, ... ...
Breaking Biology Technology: