Navigation Links
Researchers identify target for cancer drugs

For nearly a decade, scientists have been trying to fully understand a particular communication pathway inside of cells that contributes to many malignant brain and prostate cancers. While scientists have identified elements of this pathway, other key components have remained a mystery. Researchers at Whitehead Institute now have discovered a missing puzzle piece, a finding that may present drug makers with a significant new cancer target.

"We believe that we have identified a component that researchers have been looking for since 1996," says Whitehead Associate Member David Sabatini, who is also an Assistant Professor of Biology at MIT.

At the heart of this new research is a protein called Akt, an important player in the regulation of cell division and survival. Abnormally high activation of Akt has long been implicated in a variety of cancers. If Akt travels to the cell membrane, it is switched on and promotes cell division, often contributing to tumor growth as a result. However, as long as it stays within the cell cytoplasm, it remains relatively inactive. That's because the tumor-suppressor protein PTEN keeps Akt in check by destroying lipids in the cell membrane that normally draw Akt to the surface. In a sense, PTEN keeps a leash on Akt and thus suppresses cell division.

But when PTEN is mutated and unable to function, Akt breaks free. It makes its way to the cell membrane where other proteins activate it, thereby enabling Akt to contribute to tumor growth. "When a cell loses PTEN through, say, a mutation, Akt goes gangbusters," says Sabatini.

The exact means by which Akt switches on when it reaches the cell membrane has only been partially understood. As a result, researchers have lacked a clear idea about how to prevent the process. However, in the February 18 issue of the journal Science, researchers from the Sabatini lab report on discovering an important missing piece of the activation process.

This missing componen t, a molecule called mTOR, is a protein that influences a cell's ability to expand in size. mTOR has been widely studied as the target for the immunosuppressant drug rapamycin (in fact, mTOR is an acronym for "mammalian target of rapamycin"). In July of 2004, Dos Sarbassov, a scientist in Sabatini's lab, discovered a new protein that mTOR interacts with called rictor, but he wasn't yet sure of what these two proteins do together. In this latest paper, Sarbassov reports that when mTOR and rictor bind and form a complex, they help activate Akt by adding a phosphate group to a sequence of its amino acids (a process called "phosphorylation").

This process occurs not only in human cells but in other organisms such as the fruit fly. Finding this complex conserved in species as diverse as flies and humans supports the claim that the mTOR/rictor complex is indeed a missing piece of the puzzle.

According to Sarbassov, "If we find a molecule that can block the mTOR/rictor complex, then we may be able to prevent Akt from becoming active and contributing to tumor formation."


'"/>

Source:Whitehead Institute for Biomedical Research


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers discover molecule that causes secondary stroke
6. Researchers find missing genes of ancient organism
7. Researchers trace evolution to relatively simple genetic changes
8. Researchers add new tool to tumor-treatment arsenal
9. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
10. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
11. Researchers develop rapid diagnostic tool for pathogen identification
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) is ... treatments and faster cures for prostate cancer. Members of the Class of 2016 ... countries. Read More About the Class of 2016 PCF ... ... ...
Breaking Biology Technology: