Navigation Links
Researchers identify genes in fruitflies that may shed light on human cancer spread

By searching through all the genes in the fruitfly genome, Johns Hopkins scientists have identified those required for a certain type of cell migration and simultaneously captured a global view of all the genes turned on when cells are on the move.

The study, to be published April 3 in Developmental Cell, has implications for understanding cell migration and perhaps controlling cancer cells that move similarly to spread beyond an original tumor, which are what eventually kills most cancer patients.

The research identified several hundred genes that are preferentially turned on in so-called border cells of the fruitfly ovary that migrate during normal development. Two main types of genes came out of this search: those known to be involved in maintaining cell shape and structure and which become very dynamic in migrating cells; and a group of genes involved in transporting materials from the inside of a cell to its membrane surface and back again.

"So-called border cell migration shares common characteristics with metastatic cancer cells," says Xuejiao Wang, M.D., Ph.D., the first author of the study and a postdoctoral fellow in the Department of Biological Chemistry. "Cells must detach from where they are, migrate between other cells and tissues, and travel to a final destination."

Although border cell migration in the fruitfly ovary may seem a far stretch for studying human cancer metastasis, the genes uncovered in this study share more similarities with those that arise from studies of human metastatic breast cancer cells than they do with studies of other tissues in the fruitfly, according to the study's senior author, Denise Montell, Ph.D., a professor in the Department of Biological Chemistry.

The 353 genes identified in this study include some that are known to play a role in both border cell migration in fruitflies and metastasis in animal cancer cells; some that had long been suspected to play a role in cell migration, but have been more difficult to study

because their functions are shared by other genes; and some that are well understood for their roles in other cellular functions but without this study would not have been obvious candidate genes in cell migration. The results help these researchers as well as others in the field by pointing out genes to study further.

"This really was a hypothesis-generating experiment," says Montell. "The results of this study tell us where to focus future efforts."

Understanding the genetic mechanisms underlying cell migration is critical for understanding normal development, and inflammation, as well as metastasis. Classical genetic approaches for identifying key genes ?mutational analysis, for example ?have been successful but generally yield information about genes with unique functions only, and only one gene at a time. Whole genome studies, like the microarray analysis used in this study, allow researchers to identify genes that share similar functions in a way that mutational analysis cannot. And, whole genome approaches can look at most of the genes in the genome at one time.

As part of their previous work, Montell's group had generated mutant flies that show defects in border cell migration. This study identified five of the genes mutated in those flies and gives the researchers a starting point for more detailed analysis of how those genes are involved in cell migration. Wang has begun to study some of these genes to further dissect their function. The researchers also hope to perform more whole genome analyses to identify genes that interact with those already known to play a role in cell migration and metastasis.


'"/>

Source:Johns Hopkins Medical Institutions


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/24/2016)... May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology ... LCD display is the latest premium product recently added to the range of products ... ... ... 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: