Navigation Links
Researchers hot on the trail of brain cell degeneration

A research team headed by Academy Research Fellow Michael Courtney has identified a new molecular pathway in neurons. The pathway is a factor in the degeneration of brain cells, which in turn plays an important role in neurological conditions and diseases, such as Alzheimer's disease, epilepsy and stroke. Courtney and his team, based at the A. I. Virtanen Institute of the University of Kuopio, joined forces with Docent Eleanor Coffey's team at the Turku Centre for Biotechnology to carry out the study as part of a series of successful collaborations between the two teams. The results of their study are published in the latest issue of Nature Neuroscience.

In a number of neurodegenerative diseases, neurons in the brain are over-stimulated, which triggers programmed cell death, or apoptosis. The study shows that the Rho protein, which has long been recognised as an important player in cancer formation, also plays a key role in the destruction of neurons in disease.

"These surprising findings add an entire pathway to the map of neurodegenerative signalling processes," says Courtney. "This area of investigation could therefore offer novel therapeutic strategies for neurodegenerative diseases".

Targeting molecular signals

How neurons actually die has been unclear. It is likely that it is associated with a variety of different mechanisms. Research has shown that the destruction of cells be over-stimulation depends on excess entry of calcium into the cells. Researchers have long been trying to map how cells generate destruction signals in response to the calcium, in the hope of finding new targets for drug design.

The object of the study, the Rho protein, belongs to a family of proteins able to influence signals that had been linked to cell degeneration. The two teams' analysis demonstrated that over-stimulation causes activation of Rho as well as cell destruction signals. Blocking Rho activity by genetic modification k eeps the protein in an inactive state, and the nerve cells thus survive a previously toxic level of over-stimulation.

The study identifies a new factor provoking cell degeneration. It is more than likely that future research will uncover more such factors interacting with each other. Investigating these will benefit new forms of treatment and advance research that aims to alleviate symptoms. The researchers behind the study hope that the results can be used in planning new targets for drugs to reduce the cell destruction signals caused by calcium entry. Finding new targets for medicine development is also significant in terms of the economy, owing to the costly treatment of these diseases, both in Finland and globally.

Cooperation between biocentres gets research going

The teams' study is a perfect example of the cooperation between biocentres in Finland (Biocenter Finland) and international networking. The research was funded mainly by the Academy of Finland and the European Union. The two research teams are part of a Europe-wide consortium, STRESSPROTECT, within the EU Sixth Framework Programme. The consortium aims at generating the basis for novel neuroprotective drugs for neurodegenerative conditions involving over-stimulation of neurons (www.neuroprotect.eu).


'"/>

Source:Academy of Finland


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/21/2016)... Lithuania , Nov. 21, 2016   ... and object recognition technologies, today announced that the ... smart cards was submitted for the NIST ... successfully passed all the mandatory steps of the ... evaluation is a continuing test of fingerprint templates ...
(Date:11/17/2016)... it has just released a new white paper authored by Zettar that covers the ... transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can be a complicated endeavor ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... offering. ... The global bioinformatics market is ... Billion in 2016, growing at a CAGR of 21.1% during the ... driven by the growing demand for nucleic acid and protein sequencing, ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 02, 2016 , ... Robots will storm the Prudential Center in ... 2016. The event, which is held on the United Nations International Day of Persons ... back into the workplace. Suitable Technologies is partnering with NTI to showcase how technology ...
(Date:11/30/2016)... , ... November 30, 2016 , ... ... moving magnet Voice Coil Actuator with a flexure design that ensures high alignment ... with cost-effective pricing and is ideally suited where extreme precision is required, such ...
(Date:11/30/2016)... Nov. 30, 2016 Biotest Pharmaceuticals Corporation (BPC), ... to announce the addition of its newest plasma collection ... Nebraska . The 15,200 square foot state-of-the-art facility ... 2016 and brings the total number of BPC,s plasma ... Carlisle , BPC,s Chief Executive Officer said "We are ...
(Date:11/30/2016)... BEIJING , Nov. 30, 2016 Novogene ... services and solutions with cutting edge next-generation sequencing (NGS) ... a USD $75 Million [515 Million RMB] B round ... Capital Management ( Shenzhen ) Co., Ltd. ... Innovation") and Shanghai Sigma Square Investment Center LP ("Sigma ...
Breaking Biology Technology: