Navigation Links
Researchers find molecule that inhibits regrowth of spinal nerve cells

A molecule that helps the body's motor nerve cells grow along proper paths during embryonic development also plays a major role in inhibiting spinal-cord neurons from regenerating after injury, researchers at UT Southwestern Medical Center have found. In cultured cells, the researchers found that a component of myelin ?a substance that normally insulates and stabilizes long nerve fibers in adult vertebrates ?chemically blocks the ability of nerve cells to grow through myelin that is released when the spinal cord is damaged. While other myelin components also block nerve growth, a component called ephrin-B3 inhibits such activity as well or better than that of other known blocking agents combined, UT Southwestern researchers report in an upcoming issue of the Proceedings of the National Academy of Sciences.

"I believe that to the extent that overcoming myelin-based inhibition is going to provide some sort of functional recovery for spinal cord injury patients, understanding ephrins is a major step forward," said Dr. Luis Parada, senior author on the paper and director of the Center for Developmental Biology and the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration at UT Southwestern. A mixture of molecules and proteins, myelin insulates nerve fibers and impedes them from having contact with other nerve cells. After a spinal-cord injury, myelin is released into the tissues. Not only does myelin encourage the growth of scars ?called glial scars ?which physically block nerve cells from regrowing in the damaged area, but components of myelin also chemically prevent nerve cells from regrowing there as well.

Considerable research has been done in the past 10 years to identify elements in myelin that chemically inhibit the regeneration of nerve cells, Dr. Parada said. Three individual components ?the molecules Nogo, MAG and OMgp ?have been shown to do so in isolation. Developmental biologists at UT Southwestern have been studying how eph rin-B3 helps control how and where nerve fibers grow during early development. They previously showed that the molecule throws up "fences" that repel developing nerves and guide them along the pathways to their appropriate connections to muscles.

In 2002 Dr. Mark Henkemeyer, associate professor in the Center for Developmental Biology and of cell biology and one of the authors of the PNAS study, found that such a "fence" is erected specifically down the middle of the cortical spinal tract, which is damaged during spinal-cord injury.

In the current study, Dr. Parada and his colleagues asked: What is this molecule, whose normal function is to be repellent during embryonic development, doing in the mature system?

"To our surprise, we found that ephrin-B3, which normally is present as a 'wall' down the middle of adult spinal cords, also is found in very high levels in adult myelin," said Dr. Parada.

The researchers knew from previous work that ephrin-B3 interacts with receptors on neurons in the cortical spinal cord. So, in the lab, led by the study's lead author Dr. M. Douglas Benson, a postdoctoral research fellow, they cultured neurons together with isolated ephrin-B3 and confirmed that the molecule activated the neuron's receptors. They then cultured normal myelin together with the neurons and got the same results.

However, when they cultured neurons with myelin from which the ephrin-B3 had been removed, the receptors were not activated. The findings suggest that there is much more to be learned about myelin-based inhibition, Dr. Parada said. "We firmly believe that ephrin-B3 is an important, functional, relevant component of myelin, although there may be other elements that are left to be discovered," he said.

Dr. Parada added that several factors must be overcome before spinal-cord regeneration and recovery from injury can occur in a meaningful way for patients.

"We have to figure out how to dissolve the glial scars or impede their formation," he said. "We also need to get mature neurons to be better at growing, similar to the way they do during embryonic development. And finally, we have to remove myelin-based inhibition. If and when we achieve those three things, then we'll have robust regeneration of injured nerves."

Other Center for Developmental Biology researchers involved with the study were Dr. Mark Lush, postdoctoral research fellow, and Dr. Q. Richard Lu, assistant professor. Dr. Mario Romero, assistant professor of neurology, also contributed.


'"/>

Source:UT Southwestern Medical Center


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... TEANECK, N.J. , May 16, 2017  Veratad ... leading provider of online age and identity verification solutions, ... the K(NO)W Identity Conference 2017, May 15 thru May ... Ronald Regan Building and International Trade Center. ... across the globe and in today,s quickly evolving digital ...
(Date:4/18/2017)... , April 18, 2017  Socionext Inc., a global expert ... a media edge server, the M820, which features the company,s hybrid ... software provided by Tera Probe, Inc., will be showcased during the ... the NAB show at the Las Vegas ... ...
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... Iowa (PRWEB) , ... October 12, 2017 , ... ... based in Vilnius, Lithuania, announced today that they have entered into a multiyear ... is to provide CRISPR researchers with additional tools for gene editing across all ...
(Date:10/12/2017)... ... 2017 , ... BioMedGPS announces expanded coverage of SmartTRAK Business ... US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and Sealants module ... and biologic sealants used in surgical applications. BioMedGPS estimates the market will grow ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
Breaking Biology Technology: