Navigation Links
Researchers feed tiny pills of RNA to planarians to identify genes essential for regeneration

University of Utah researchers-feeding microscopic pills of RNA to quarter-inch long worms called planarians-have identified many genes essential to understanding a biological mystery that has captivated scientists for hundreds of years: regeneration.

In pinpointing the genes, the U School of Medicine researchers have established the planarian as a genetically sound model for human biology, to take its place alongside Drosophila (fruit flies), C.elegans (another worm), zebrafish, and mice.

The study, to be published in the May issue of Developmental Cell, employed the first large-scale use of RNA interference (RNAi) to silence planarian genes to identify their role in the worm's biology, according to Alejandro Sánchez Alvarado, Ph.D., principal investigator and U medical school associate professor of neurobiology and anatomy. The U team's work shows that planarian genes can be selectively manipulated to study some of the most basic and important areas of biological research: stem cells, homeostasis (tissue loss and replacement), regeneration, and disease.

"Planarian biology has much in common to the biology that you and I share," said Sánchez Alvarado, who last month was appointed a Howard Hughes Medical Institute investigator. "This work opens a whole new window to study aspects of human biology that are barely accessible today."

The planarians used in these studies, also called flatworms, live in fresh water and have a singular ability to regenerate. Chop one in half, and two new worms grow. Their ability to regenerate is so prolific that a tissue fragment only 1/279th of the worm's length can grow into a new planarian. Researchers know that planarian stem cells, called neoblasts, play a central role in both regeneration and homeostasis. But how they do that has remained shrouded in mystery.

Sánchez Alvarado and his research associates used bacteria to synthesize double-stranded RNA that silences planarian genes. The bacteria effectively become tiny pills-five to 10 microns across-that now can be mixed into planarian food. When Sánchez Alvarado and his associates fed the worms dinner, the RNA diffused throughout their bodies.

Sánchez Alvarado and Helen Hay Whitney Foundation postdoctoral fellow Peter W. Reddien, Ph.D., silenced and screened 1,065 planarian genes with RNAi. Specific defects were associated with 240 of the genes that were silenced. About 85 percent (204) of the 240 genes are shared by the genomes of other species, including humans, according to Sánchez Alvarado.

The researchers found that 145 of the silenced genes affect both regeneration and tissue loss and replacement. Some of the genes were essential to homeostasis, but not regeneration, and 35 genes were found to be essential to regeneration, but not homeostasis.

"This tells us that separate genetic pathways for regeneration and homeostasis must exist," Sánchez Alvarado said. "It's a huge step forward for us and opens the possibility of systematic molecular studies to find the genetic cause of regenerative processes in animals."

Silencing planarian genes may also help in studying human disease. Thirty-eight of the genes Sánchez Alvarado and his team silenced are related to human genes associated with diseases, such as ataxia (inability to coordinate muscular movements), bradyopsia (slow vision), and cancer. Only eight of those genes have a corresponding knockout gene in mice. This means researchers may be able to use planarians to learn about human diseases that can't be studied in other animal models.

Another 35 of the silenced genes may shed light on the parasitic platyhelminthes, such as Schitosoma mansoni, which cause disease in millions of people. The genes identified by the U researchers may be required for the survival of the parasites.

"Considering such pathogens are estimated to cause disease in nearly 300 million people throughout the world, these genes might m ake attractive drug targets," Sánchez Alvarado and his fellow researchers wrote in the study.

The planarian makes an ideal biological model for three important reasons, according to Sánchez Alvarado.

* It is amenable to genetic manipulation.
* It is an extremely simple organism with little redundancy in its genes, meaning it has fewer genes to carry out specific functions. This makes it easier to identify a gene's function by silencing it and will help how researchers target their efforts on equivalent genes in mice or zebrafish, for example.
* It is inexpensive to study.

Now that Sánchez Alvarado and his colleagues have opened the door to understanding regeneration by identifying key genes in the process, the U researcher predicts, with aid of the planarian, more discoveries are on the way.

"Our limitations right now are how many experiments we can do in a day," he said. "The mystery of what makes regeneration possible, particularly in these animals, is on its way to finally being resolved."


'"/>

Source:University of Utah Health Sciences Center


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 ... healthcare facilities are primarily focused on medical ... that measure point-of-care parameters. Wearable devices that ... a user,s freedom of movement are being ... sensors for human biomedical signal acquisition coupled ...
(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 /PRNewswire/ ... Potentials of that Rising Market Are you ... new analysis forecasts revenues for checkpoint inhibitors. Visiongain,s ... world market, submarket, product and national level. ... Instead discover what progress, opportunities and revenues those ...
(Date:2/2/2016)... , Feb. 2, 2016   Parabon NanoLabs ... the U.S. Army Research Office and the Defense ... and sensitivity of the company,s Snapshot Kinship ... Mission and, more generally, defense-related DNA forensics.  Although ... capabilities (predicting appearance and ancestry from DNA evidence), ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... 2016  Neurocrine Biosciences, Inc. (NASDAQ: NBIX ) today announced ... 2015. --> --> For ... of $29.3 million, or $0.34 loss per share, compared to a ... the same period in 2014. For the year ended December 31, ... $1.05 loss per share, as compared to a net loss of ...
(Date:2/11/2016)... NEW YORK , Feb. 11, 2016  Bioethics International, ... how medicines are researched, developed, marketed and made accessible to ... BMJ Open had named the publication of the ... for 2015. The publication is also featured as one of ... published in the last year that are most frequently read. ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... dedicated to delivering cutting-edge information focused on the development and manufacture of ... become a premier sponsor of the 2016 BioProcess International Awards – Recognizing ...
(Date:2/11/2016)... BioInformant announces the February 2016 release of its ... and Technologies – Market Size, Segments, Trends, and Projections ... The first and only market research firm ... more than a decade of historical information on all ... type. This powerful 175 page global strategic report contains ...
Breaking Biology Technology: