Navigation Links
Researchers feed tiny pills of RNA to planarians to identify genes essential for regeneration

University of Utah researchers-feeding microscopic pills of RNA to quarter-inch long worms called planarians-have identified many genes essential to understanding a biological mystery that has captivated scientists for hundreds of years: regeneration.

In pinpointing the genes, the U School of Medicine researchers have established the planarian as a genetically sound model for human biology, to take its place alongside Drosophila (fruit flies), C.elegans (another worm), zebrafish, and mice.

The study, to be published in the May issue of Developmental Cell, employed the first large-scale use of RNA interference (RNAi) to silence planarian genes to identify their role in the worm's biology, according to Alejandro Sánchez Alvarado, Ph.D., principal investigator and U medical school associate professor of neurobiology and anatomy. The U team's work shows that planarian genes can be selectively manipulated to study some of the most basic and important areas of biological research: stem cells, homeostasis (tissue loss and replacement), regeneration, and disease.

"Planarian biology has much in common to the biology that you and I share," said Sánchez Alvarado, who last month was appointed a Howard Hughes Medical Institute investigator. "This work opens a whole new window to study aspects of human biology that are barely accessible today."

The planarians used in these studies, also called flatworms, live in fresh water and have a singular ability to regenerate. Chop one in half, and two new worms grow. Their ability to regenerate is so prolific that a tissue fragment only 1/279th of the worm's length can grow into a new planarian. Researchers know that planarian stem cells, called neoblasts, play a central role in both regeneration and homeostasis. But how they do that has remained shrouded in mystery.

Sánchez Alvarado and his research associates used bacteria to synthesize double-stranded RNA that silences planarian genes. The bacteria effectively become tiny pills-five to 10 microns across-that now can be mixed into planarian food. When Sánchez Alvarado and his associates fed the worms dinner, the RNA diffused throughout their bodies.

Sánchez Alvarado and Helen Hay Whitney Foundation postdoctoral fellow Peter W. Reddien, Ph.D., silenced and screened 1,065 planarian genes with RNAi. Specific defects were associated with 240 of the genes that were silenced. About 85 percent (204) of the 240 genes are shared by the genomes of other species, including humans, according to Sánchez Alvarado.

The researchers found that 145 of the silenced genes affect both regeneration and tissue loss and replacement. Some of the genes were essential to homeostasis, but not regeneration, and 35 genes were found to be essential to regeneration, but not homeostasis.

"This tells us that separate genetic pathways for regeneration and homeostasis must exist," Sánchez Alvarado said. "It's a huge step forward for us and opens the possibility of systematic molecular studies to find the genetic cause of regenerative processes in animals."

Silencing planarian genes may also help in studying human disease. Thirty-eight of the genes Sánchez Alvarado and his team silenced are related to human genes associated with diseases, such as ataxia (inability to coordinate muscular movements), bradyopsia (slow vision), and cancer. Only eight of those genes have a corresponding knockout gene in mice. This means researchers may be able to use planarians to learn about human diseases that can't be studied in other animal models.

Another 35 of the silenced genes may shed light on the parasitic platyhelminthes, such as Schitosoma mansoni, which cause disease in millions of people. The genes identified by the U researchers may be required for the survival of the parasites.

"Considering such pathogens are estimated to cause disease in nearly 300 million people throughout the world, these genes might m ake attractive drug targets," Sánchez Alvarado and his fellow researchers wrote in the study.

The planarian makes an ideal biological model for three important reasons, according to Sánchez Alvarado.

* It is amenable to genetic manipulation.
* It is an extremely simple organism with little redundancy in its genes, meaning it has fewer genes to carry out specific functions. This makes it easier to identify a gene's function by silencing it and will help how researchers target their efforts on equivalent genes in mice or zebrafish, for example.
* It is inexpensive to study.

Now that Sánchez Alvarado and his colleagues have opened the door to understanding regeneration by identifying key genes in the process, the U researcher predicts, with aid of the planarian, more discoveries are on the way.

"Our limitations right now are how many experiments we can do in a day," he said. "The mystery of what makes regeneration possible, particularly in these animals, is on its way to finally being resolved."


'"/>

Source:University of Utah Health Sciences Center


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/1/2017)... -- Aware, Inc. (NASDAQ: AWRE), a leading supplier of biometrics ... has resigned, effective March 3, 2017, as co-Chief ... Treasurer of Aware citing a desire to retire.  Mr. ... the Board of Directors of Aware. ... co-President, General Counsel has been named Chief Executive Officer, ...
(Date:2/26/2017)... , Feb. 25, 2017  Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring, ... and Reentry. "Too often, too many ... and county jails are trying to tackle this ... and friends and family members. While significant steps are ...
(Date:2/16/2017)... SAN FRANCISCO , Feb. 16, 2017 /PRNewswire/ ... research, today announced that it has received Laboratory ... The CAP Accreditation is presented to laboratories that ... and who demonstrate scientifically rigorous processes. ... of excellence in laboratory practices. We,re honored to ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... March 29, 2017  Applied BioMath ( ... modeling to drug research and development, today ... Zymeworks Inc. for quantitative systems pharmacology (QSP) ... for the treatment of cancer. ... for GLP toxicology studies and first-in-human dose ...
(Date:3/29/2017)... , ... March 29, 2017 , ... ... that it is exhibiting in booth 513 at the Association of Community Cancer ... Downtown Hotel, March 29-31. , CANCERSCAPE unites key stakeholders from leading national ...
(Date:3/29/2017)... March 29, 2017 /PRNewswire/ - The University of Missouri ... a business of Sterigenics International, and General Atomics (GA), ... submitted to the U.S. Nuclear Regulatory Commission (NRC). This ... of molybdenum-99 (Mo-99). Once operational, production from this facility ... demand for Mo-99, which currently must be imported from ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... for the Advancement of Science (AAAS), the world's largest general scientific society ... its high-impact scholarly collection across its cross-platform reference management system. , All ...
Breaking Biology Technology: